Skip to main content
Log in

Seasonal variation of microbial populations and biomass in Tatachia grassland soils of Taiwan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

To investigate the seasonal variations of microbial ecology in grassland of Tatachia forest, soil properties, microbial populations, microbial biomass, and 16S rDNA clone library analysis were determined. The soil had temperatures 6.6–18.4°C, pH 3.6–5.1, total organic carbon 1.11–10.68%, total nitrogen 0.18–0.78%, and C/N ratios 3.46–20.55. Each gram of dry soil contained bacteria, actinomycetes, fungi, cellulolytic, phosphate-solubilizing microbes, and nitrogen-fixing microbes 4.54 × 104 to 3.79 × 107, 3.43 × 102 to 2.17 × 105, 5.74 × 103 to 3.76 × 106, 1.97 × 103 to 1.34 × 106, 8.49 × 102 to 5.59 × 105, and 3.86 × 102 to 3.75 × 105 CFU, respectively. Each gram of soil contained 117–2,482 μg of microbial biomass carbon, 23–216 μg of microbial biomass nitrogen and 9–29 μg of DNA. The microbial populations, microbial biomass, and DNA decreased stepwise with the depth of soil, and they had low values in winter seasons. The microbial populations, microbial biomass carbon, microbial biomass nitrogen, and DNA at the BW2 horizon were 8.42–17.84, 19.26–64.40, 16.84–61.11, and 31.03–46.26% of those at the O horizon, respectively. When analyzing 16S rDNA library, members of Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, candidate division TM1, candidate division TM7, Gammatimonadetes, and Verrucomicrobia were identified. Members of Proteobacteria (44.4%) and Acidobacteria (33.3%) dominated the clone libraries. Within the phylum Proteobacteria, α-, β-, and γ-Proteobacteria were most numerous, followed by δ-Proteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, A. S., & Schlesinger, W. H. (2004). Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biology and Biochemistry, 36, 581–589.

    Article  CAS  Google Scholar 

  • Barbhuiya, A. R., Arunachalam, A., Pandey, H. N., Arunachalam, K., Khan, M. L., & Nath, P. C. (2005). Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest. European Journal of Soil Biology, 40, 113–121.

    Article  Google Scholar 

  • Berg, M. P., Kniese, J. P., & Verhoef, H. A. (1998). Dynamic and stratification of bacteria and fungi in the organic layers of a scots pine forest soil. Biology and Fertility of Soils, 26, 313–322.

    Article  Google Scholar 

  • Bradley, R. L., & Fyles, J. W. (1995). Growth of paper birch (Betula papyrifera) seedings increases soil available C and microbial acquisition of soil nutrients. Soil Biology and Biochemistry, 27, 1565–1571.

    Article  CAS  Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842.

    Article  CAS  Google Scholar 

  • Carter, M. R., Gregorich, E. G., Angers, D. A., Beare, M. H., Sparling, G. P., Wardle, D. A., & Voroney, R. P. (1999). Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions. Canadian Journal of Soil Science, 79, 507–520.

    Google Scholar 

  • Chang, C. H., Hsieh, C. Y., & Yang, S. S. (2001). Effect of cultural media on the phosphate-solubilizing activity of thermo-tolerant microbes. Journal of the Biomass Energy Society of China, 20, 79–90.

    Google Scholar 

  • Chen, W. S., & Yang, S. S. (2000). Organic acid contents in Tatachia forest soils. Journal of the Experimental Forestry, National Taiwan University, 14, 99–108.

    Google Scholar 

  • Chow, M. L., Radomski, C. C., McDermott, J. M., Davies, J., & Axelrood, P. E. (2002). Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiology Ecology, 42, 347–357.

    Article  CAS  Google Scholar 

  • de Boer, W., Tietema, A., Gunnewick, P. J. A. K., & Laanbroek, H. J. (1992). The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity. Soil Biology and Biochemistry, 24, 229–234.

    Article  Google Scholar 

  • Dunbar, J., Takala, S., Barns, S. M., Davis, J. A., & Kuske, C. R. (1999). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Applied and Environmental Microbiology, 65, 1662–1669.

    CAS  Google Scholar 

  • Fierer. N., Jackson, J. A., Vilgalys, R., & Jackson R. B. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 71, 4117–4120.

    Article  CAS  Google Scholar 

  • Finlay, B. J. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296, 1061–1063.

    Article  CAS  Google Scholar 

  • Fisk, M. C., Ruether, K. F., & Yavitt, J. B. (2003). Microbial activity and functional composition among northern peatland ecosystems. Soil Biology and Biochemistry, 35, 591–602.

    Article  CAS  Google Scholar 

  • Garten, C. T. Jr. (2004). Potential net soil N mineralization and decomposition of glycine-13C in forest soils along an elevation gradient. Soil Biology and Biochemistry, 36, 1491–1496.

    Article  CAS  Google Scholar 

  • Grayston, S. J., Vaughan, D., & Jones, D. (1996). Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5, 29–56.

    Article  Google Scholar 

  • Hedlund, K. (2002). Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology and Biochemistry, 34, 1299–1307.

    Article  CAS  Google Scholar 

  • Heyndrickx, M., Vaterin, L., Vandamme, P., Kersters, K., & De Vos, P. (1996). Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. Journal of Microbiological Methods, 26, 247–259.

    Article  CAS  Google Scholar 

  • Imberger, K. T., & Chiu, C. Y. (2001). Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. Biology and Fertility of Soils, 33, 105–110.

    Article  CAS  Google Scholar 

  • Joergensen, R. G., Brooks, P. C., & Jenkinson, D. S. (1990). Survival of the soil biomass at elevated temperatures. Soil Biology and Biochemistry, 22, 1129–1139.

    Article  Google Scholar 

  • Krsek, M., & Wellington, E. M. H. (1999). Comparison of different methods for the isolation and purification of total community DNA from soil. Journal of Microbiological Methods, 39, 1–16.

    Article  CAS  Google Scholar 

  • Luizao, R. C. C., Bonde, T. A., & Rosswall, T. (1992). Seasonal variation of soil microbial biomass—the effect of clear felling in a tropical rain forest and establishment of pasture in the Central Amazon. Soil Biology and Biochemistry, 24, 805–813.

    Article  Google Scholar 

  • Maidak, B. L., Cole, J. R., Parker C. T. Jr., Garrity, G. M., Larsen, N., Li, B., Lilbum, T. G., McCaughey, M. J., Olsen, G. J., Overbeek, R., Pramanik, S., Schmidt, T. M., Tiedje, J. M., & Woese, C. R. (1999). A new version of the RDP (Ribosomal Database Project). Nucleic Acids Research, 27, 171–173.

    Article  CAS  Google Scholar 

  • Maithani, K., Tripathi, R. S., Arunachalam, A., & Pandey, H. N. (1996). Seasonal dynamics of microbial biomass C, N and P during regrowth of a disturbed subtropical humid forest in northeast India. Applied Soil Ecology, 4, 31–37.

    Article  Google Scholar 

  • Mandels, M., Mrdeiro, J. E., Andreotti, R. E., & Bisset, F. H. (1981). Evaluation of cellulose culture filtrates under use conditions. Biotechnology and Bioengineering, 23, 2009–2026.

    Article  CAS  Google Scholar 

  • Martikainen, P. J., & Palojarvi, A. (1990). Evaluation of the fumigation extraction method for determination of microbial C and N in a range of forest soils. Soil Biology and Biochemistry, 27, 797–802.

    Article  Google Scholar 

  • McCaig, A. E., Glover, L. A., & Prosser, J. I. (1999). Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology, 65, 1721–1730.

    CAS  Google Scholar 

  • Miethling, R., Wieland, G., Backhaus, H., & Tebbe, C. C. (2000). Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L 33. Microbial Ecology, 40, 43–56.

    CAS  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–670.

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In A. L. Page (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties (2nd ed., pp. 539–580). Wisconsin: American Society of Agronomy.

    Google Scholar 

  • Priha, O., Grayston, S. J., Hiukka, R., Pennanen, T., & Smolander, A. (2001). Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Biology and Fertility of Soils, 33, 17–24.

    Article  CAS  Google Scholar 

  • Raghubanshi, A. S. (1991). Dynamics of soil biomass C, N, and P in a dry tropical forest in India. Biology and Fertility of Soils, 12, 55–59.

    Article  CAS  Google Scholar 

  • Ranjard, L., Poly, F., & Nazaret, S. (2000). Monitoring complex bacterial communities using culture-independent molecular techniques: Application to soil environment. Research in Microbiology, 151, 167–177.

    Article  CAS  Google Scholar 

  • SAS Institute. (2002). SAS/STAT User’s guide, Release 6.03. NC: SAS Institute.

    Google Scholar 

  • Soil Survey Staff. (2003). Keys to soil taxonomy (9th ed.). Blacksburg: United States Department of Agriculture, Soil Conservation Service. http://www.soils.usda.gov/technical/classification/tax_keys/.

  • Srivastava, S. C., & Singh, J. S. (1988). Carbon and phosphorus in the soil biomass of some tropical soils of India. Soil Biology and Biochemistry, 20, 743–747.

    Article  CAS  Google Scholar 

  • Stackebrandt, E., Liesack, W., & Goebel, B. M. (1993). Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. The Federation of American Societies for Experimental Biology, 7, 232–236.

    CAS  Google Scholar 

  • Tietema, A., & Wessel, W. W. (1994). Microbial activity and leaching during initial oak leaf litter decomposition. Biology and Fertility of Soils, 18, 49–54.

    Article  CAS  Google Scholar 

  • Torsvik, V., Sorheim, R., & Goksoyr, J. (1996). Total bacterial diversity in soil and sediment communities—a review. Journal of Industrial Microbiology, 17, 170–178.

    Article  CAS  Google Scholar 

  • Toyota, K., & Kuninaga, S. (2006). Comparison of soil microbial community between soils amended with or without farmyard manure. Applied Soil Ecology, 33, 39–48.

    Article  Google Scholar 

  • Treves D. S., Xia, B., Zhou, J., & Tiedje, J. M. (2003). A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microbial Ecology, 45, 20–28.

    Article  CAS  Google Scholar 

  • Tsai, S. H., Selvam, A. & Yang, S. S. (2007). Microbial diversity of topographical gradient profiles in Fushan forest soils of Taiwan. Ecological Research (in press). DOI 10.1007/s11284–006–0323.2.

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial C. Soil Biology and Biochemistry, 19, 703–707.

    Article  CAS  Google Scholar 

  • Watanabe, T., Aasakawa, S., Nakamura, A., Nagaoka, K., & Kimura, M. (2004). DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil. FEMS Microbiology Letters, 232, 153–163.

    Article  CAS  Google Scholar 

  • Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R., & Brookes, P. C. (1990). Measurement of soil microbial biomass C by fumigation extraction—an autoclaved procedure. Soil Biology and Biochemistry, 22, 1167–1169.

    Article  CAS  Google Scholar 

  • Yang, C. K., & Yang, S. S. (2001). Microbial ecology of soils surrounding nuclear and thermal power plants in Taiwan. Environment International, 26, 315–322.

    Article  CAS  Google Scholar 

  • Yang, S. S., Chang, H. L., Wei, C. B., & Lin, H. C. (1991). Reduce waste production with modified Kjeldahl method for nitrogen measurement. Journal of the Biomass Energy Society of China, 10, 147–155.

    Google Scholar 

  • Yang, S. S., Fan, H. Y., Yang, C. K., & Lin, I. C. (2003). Microbial population of spruce soil in Tatachia mountain of Taiwan. Chemosphere, 52, 1489–1498.

    Article  CAS  Google Scholar 

  • Yang, S. S., Lai, C. M., Sun, L. Y., Luo, Y. C., Fan, H. Y., Yang, C. K., & Wei, C. B. (1998a). Microbial ecology of Tatachia mountain soil. Journal of the Chinese Agricultural Chemical Society, 36, 229–238.

    Google Scholar 

  • Yang, S. S., Lin, Y. C., Yang, C. K., Chang, E. H., & Wei, C. B. (1999). Microbial ecology of Hsieh-Ho thermal power plant and its surrounding area. Journal of Microbiology, Immunology and Infection, 32, 269–277.

    CAS  Google Scholar 

  • Yang, S. S., Sun, R. Y., Yang, C. K., Wei, C. B., Huang, R. Y., & Hsu, W. F. (1998b). Microbial population at nuclear power plant No. 2 and its surrounding areas. Journal of Environmental Protection Society of ROC, 21, 144–158.

    Google Scholar 

  • Yang, S. S., Tsai, S. H., Fan, H. Y., Yang, C. K., Huang, W. L., & Cho, S. T. (2006). Microbial population of hemlock soil in Tatachia mountain of Taiwan. Journal of Microbiology, Immunology and Infection, 39, 195–205.

    Google Scholar 

  • Zhou, J. Z., Xia, B. C., Treves, D. S., Wu, L. Y., Marsh, T. L., O’Neill, R.V., Palumbo A.V., & Tiedje, J. M. (2002). Spatial and resource factors influencing high microbial diversity in soil. Applied and Environmental Microbiology, 68, 326–334.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. I-Chu Chen for his helpful assistance in sampling, Miss Chia-Bei Wei for her technical assistance, and National Science Council of Taiwan for financial support (NSC 91-2621-B002-014, NSC 92-2621-B002-007, NSC 93-2621-B002-005 and NSC 94-2313-B002-090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Shyng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, ST., Tsai, SH., Ravindran, A. et al. Seasonal variation of microbial populations and biomass in Tatachia grassland soils of Taiwan. Environ Geochem Health 30, 255–272 (2008). https://doi.org/10.1007/s10653-007-9113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-007-9113-1

Keywords

Navigation