Skip to main content
Log in

A priori error estimate of a multiscale finite element method for transport modeling

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

This work proposes an a priori error estimate of a multiscale finite element method to solve convection-diffusion problems where both velocity and diffusion coefficient exhibit strong variations at a scale which is much smaller than the domain of resolution. In that case, classical discretization methods, used at the scale of the heterogeneities, turn out to be too costly. Our method, introduced in Allaire et al. (A Multiscale Finite Element Method for Transport Modeling. September 10–14, 2012), aims at solving this kind of problems on coarser grids with respect to the size of the heterogeneities by means of particular basis functions. These basis functions are defined using cell problems and are designed to reproduce the variations of the solution on an underlying fine grid. Since all cell problems are independent from each other, these problems can be solved in parallel, which makes the method very efficient when used on parallel architectures. This article focuses on the proof of an a priori error estimate of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G., Brizzi, R., Mikelić, A., Piatnitski, A.L.: Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media. Chem. Eng. Sci. 65(7), 2292–2300 (2010)

    Article  Google Scholar 

  2. Allaire, G., Brizzi, R.: A multiscale finite element method for numerical homogenization. Multiscale Model. Simul. 4(3), 125–144 (2006)

    MathSciNet  Google Scholar 

  3. Allaire, G., Desroziers, S., Enchéry, G., Ouaki, F.: A multiscale finite element method for transport modeling. In: Proceedings of the 6th European Congress on Computational methods in applied sciences and engineering (ECCOMAS 2012), September 10–14, 2012, Vienna, Austria

  4. Allaire, G., Mikelić, A., Piatnitski, A.L.: Homogenization approach to the dispersion theory for reactive transport through porous media. SIAM J. Math. Anal. 42(1), 125–144 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Allaire, G., Pankratova, I., Piatnitski, A.: Homogenization and concentration for a diffusion equation with large convection in a bounded domain. J. Functional Anal. 262(1), 300–330 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Allaire, G., Raphael, A.L.: Homogenization of a convection-diffusion model with reaction in a porous medium. C. R. Math. Acad. Sci. Paris 344(8), 523–528 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Arbogast, T.: Numerical subgrid upscaling of two-phase flow in porous media. In: Chen, Z., Ewing, R., Shi, Z.-C. (eds.) Lecture Notes in Physics. Springer, Berlin (2000)

    Google Scholar 

  8. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic analysis for periodic structures. North-Holland Publishing Company, Amsterdam (1972)

  9. Bercovier, M., Pironneau, O., Sastri, V.: Finite elements and characteristics for some parabolic-hyperbolic problems. Appl. Math. Model. 7(2), 89–96 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brooks, A.N., Hughes, Th.J.R: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations. Comput. Methods Appl. Mech. Eng. 32(1), 199–259 (1982)

  11. Capdeboscq, Y.: Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Sér. I Math. 327(9), 807–812 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Céa, J.: Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier 14(2), 345–444 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ciarlet, P. G.: The finite element method for elliptic problems. North-Holland Publishing Company, Amsterdam (1978)

  14. Donato, P., Piatnitski, A.L.: Averaging of nonstationary parabolic operators with large lower order terms. Multi Scale Problems and Asymptotic Analysis. GAKUTO Int. Ser. Math. Sci. Appl 24, 153–165 (2005)

    MathSciNet  Google Scholar 

  15. Engquist, W., Weinan, E.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Efendiev, Y., Hou, Th.Y.: Multiscale finite element methods: theory and applications. Springer, New York (2009)

  17. Henning, P., Ohlberger, M.: The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Netw. Heterog. Media 5(4), 711–744 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hou, Th.Y., Liang, D.: Multiscale analysis for convection dominated transport equations. Discrete Contin. Dyn. Syst. 23(1–2), 281–298 (2009)

  19. Hou, Th.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

  20. Hou, Th.Y., Wu, X.-H., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68(227), 913–943 (1999)

  21. Kozlov, S.M.: Averaging of random operators. Math. USSR-Sb. 37(2), 167–180 (1980)

    Article  MATH  Google Scholar 

  22. Marušić-Paloka, E., Piatnitski, A.L.: Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection. J. Lond. Math. Soc. 72(2), 391–409 (2005)

    Article  MATH  Google Scholar 

  23. Matache, A.M., Babuška, I., Schwab, C.: Generalized p-fem in homogenization. Numer. Math. 86(2), 319–375 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ouaki, F.: Études de méthodes multi-échelles pour la simulation de réservoir, Ph.D. Thesis, École Polytechnique, 2013. http://tel.archives-ouvertes.fr/docs/00/92/27/83/PDF/thesis-report

  25. Owhadi, H., Zhang, L.: Metric-based upscaling. Commun. Pure Appl. Math. 60(5), 675–723 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Papanicolaou, G.C.: Diffusion in random media. Surv. Appl. Math. 1, 205–253 (1995)

    Article  MathSciNet  Google Scholar 

  27. Pironneau, O., Liou, J., Tezduyar, T.: Characteristic-galerkin and galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains. Comput. Methods Appl. Mech. Eng. 100(1), 117–141 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sanchez-Palencia, É.: Non-homogeneous media and vibration theory. Springer, Berlin, Heidelberg (1980)

  29. Tartar, L.: The general theory of homogenization : a personalized introduction, 7. Springer, Berlin, Heidelberg (2009)

  30. Wheeler, M.F.: A priori L\(_2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10(4), 723–759 (1973)

    Article  MathSciNet  Google Scholar 

  31. Zhikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of differential operators and integral functionals. Springer, Berlin, Heidelberg (1994)

Download references

Acknowledgments

The results presented in this paper are part of F. Ouaki’s PhD work which was supported by IFP Energies nouvelles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Ouaki.

Additional information

G. Allaire is a member of the DEFI project at INRIA Saclay Ile-de-France.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouaki, F., Allaire, G., Desroziers, S. et al. A priori error estimate of a multiscale finite element method for transport modeling. SeMA 67, 1–37 (2015). https://doi.org/10.1007/s40324-014-0023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-014-0023-8

Keywords

Mathematics Subject Classification

Navigation