Skip to main content

Advertisement

Log in

Objects, signs, and representations in the semio-cognitive analysis of the processes involved in teaching and learning mathematics: A Duvalian perspective

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

In mathematical activities and in the analysis of mathematics teaching-learning processes, objects, signs, and representations are often mentioned, where the meaning assigned to those words is sometimes very broad, sometimes limited, other times intuitive, allusive, or not completely clear. On the other hand, as international research in mathematics education has shown, the confusion between objects, signs, and representations is one of the main reasons of the difficulties in learning mathematics. But what kinds of objects are involved in teaching-learning mathematics? Why should we distinguish a knowledge object, and in particular a mathematical object, from one of its representations? What is meant by “sign”? Can we equate the term “sign” with the term “representation”? In this article we will try to provide an answer to these questions, taking into account the main contributions to mathematics education made by the semiotic theories that are considered the most relevant in the analysis of the cognitive processes involved in mathematical activities. In particular, we will refer to the semiotic representation registers theory, on which Duval’s semio-cognitive approach is based. In general it will be shown that the choice of a semiotic approach to mathematics education assumes a fundamental theoretical choice closely tied to the fundamental distinction between classifying signs and classifying semiotic systems, which is often implicit or rather not emphasized enough. The example presented shows how the semio-cognitive analysis of the processes involved in the solution of a mathematical problem provides new and effective professional reading keys of students’ difficulties in learning mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. On the subject of representation and the issues it raises in teaching-learning mathematics, an important collection of points of view, studies, and research predating the 90’s is that of Janvier (1987), most of all within the scope of psychology and pedagogy.

  2. The translation of all quotes from non-English-language sources has been rendered by the author.

  3. A practice is any action carried out by someone to solve a mathematical problem, communicate the solution to other persons, validate and generalize the solution in other contests and problems (Godino & Batanero, 1998).

  4. On the contemporary cultural-historical theories that include the category of activity see: Roth & Radford (2011).

  5. The word “objectification,” from “objectify,” derives from Latin obiectum (“that which is placed in front” or “that which is thrown against”) and facere (“to make”). It therefore means etymologically “to place something in front of someone in order to make it apparent, i.e., present to the senses.”

  6. A = Gottfried Wilhelm Leibniz, Sämtliche Schriften und Briefe, herausgegeben von der Preussischen (Deutschen) Akademie der Wissenschaften zu Berlin, Reihe 6. Darmstadt 1923, Leipzig 1938, Berlin 1950 - (followed by volume, part, page).

  7. In Über Sinn und Bedeutung, when referring to the principle of substitution, Frege cites Leibniz: “Eadem sunt, quae sibi mutuo substitui possunt, salva veritate” (Frege, 1892, p. 35). (For further details, see: Bagni, 2006; D’Amore, Fandiño Pinilla, Iori, & Matteuzzi, 2015).

References

  • Arzarello, F. (2006). Semiosis as a multimodal process. In L. Radford & B. D’Amore (Eds.), Semiotics, Culture and Mathematical Thinking [Special Issue]. Revista Latinoamericana de Investigación en Matemática Educativa, 9(1), 267–299.

  • Bagni, G. T. (2006). Eadem sunt, quae sibi mutuo substitui possunt, salva veritate [Those which can be substituted for each other, preserving truth, are the same]. In S. Sbaragli (Ed.), La matematica e la sua didattica: Vent’anni di impegno (pp. 34–37). Rome: Carocci Faber.

    Google Scholar 

  • Cassin, B., Apter, E., Lezra, J., & Wood, M. (Eds.). (2014). Dictionary of untranslatables: A philosophical lexicon. Princeton and Oxford: Princeton University Press.

  • D’Amore, B. (1999). Elementi di didattica della matematica [Elements of mathematics education]. Bologna: Pitagora.

  • D’Amore, B. (2000). “Concetti” e “oggetti” in matematica [“Concepts” and “objects” in mathematics]. Rivista di Matematica dell’Università di Parma, 3(6), 143–151.

    Google Scholar 

  • D’Amore, B. (2001a). Un contributo al dibattito su concetti e oggetti matematici: La posizione “ingenua” in una teoria “realista” vs. il modello “antropologico” in una teoria “pragmatica” [A contribution to the debate on mathematical concepts and objects: The “naïve” position in a “realist” theory vs. the “anthropological” model in a “pragmatic” theory]. La matematica e la sua didattica, 15(1), 31–56.

  • D’Amore, B. (2001b). Concettualizzazione, registri di rappresentazioni semiotiche e noetica [Conceptualization, registers of semiotic representation and noetic]. La matematica e la sua didattica, 15(2), 150–173.

    Google Scholar 

  • D’Amore, B. (2006). Concepts, objects, semiotics and meaning: Investigations of the concept’s construction in mathematical learning (Doctoral dissertation). Constantine the Philosopher University, Nitra, Slovakia. Retrieved from http://www.dm.unibo.it/rsddm/it/Phd/Damore/Damore.htm.

  • D’Amore, B., Fandiño Pinilla, M. I., & Iori, M. (2013). Primi elementi di semiotica: La sua presenza e la sua importanza nel processo di insegnamento-apprendimento della matematica [First elements of semiotics: Its presence and importance in mathematics teaching-learning process]. Bologna: Pitagora.

  • D’Amore, B., Fandiño Pinilla, M. I., Iori, M., & Matteuzzi, M. (2015). Análisis de los antecedentes histórico-filosóficos de la “paradoja cognitiva de Duval” [Analysis of the historical and philosophical antecedents to Duval’s cognitive paradox]. Revista Latinoamericana de Investigación en Matemática Educativa, 18(2), 177–212.

  • D’Amore, B., & Godino, D. J. (2006). Punti di vista antropologico ed ontosemiotico in didattica della matematica [Anthropological and onto-semiotic points of view in mathematics education]. La matematica e la sua didattica, 20(1), 9–38.

    Google Scholar 

  • Dewey, J. (1957). Reconstruction in philosophy. Boston: Beacon. (Original work published 1920).

  • Duval, R. (1988). Ecarts sémantiques et cohérence mathématique [Semantic disparities and mathematical coherence: An introduction to the problem of congruence]. Annales de Didactique et de Sciences cognitives, 1(1), 7–25.

    Google Scholar 

  • Duval, R. (1993). Registres de représentations sémiotique et fonctionnement cognitif de la pensée [Registers of semiotic representation and cognitive functioning of thinking]. Annales de Didactique et de Sciences Cognitives, 5(1), 37–65.

    Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine: Registres sémiotiques et apprentissages intellectuels [Semiosis and human thought: Semiotic registers and intellectual learning]. Bern: Peter Lang.

  • Duval, R. (1996). Quel cognitif retenir en didactique des mathématiques? [Which cognitive should be retained in mathematics education?] Recherche en Didactique des Mathématiques, 16(3), 349–382.

    Google Scholar 

  • Duval, R. (1998a). Signe et objet (I): Trois grandes étapes dans la problématique des rapports entre représentations et objet [Sign and object (I): Three major stages in the problem of the relationship between representation and object]. Annales de Didactique et de Sciences Cognitives, 6(1), 139–163.

  • Duval, R. (1998b). Signe et objet (II): Questions relatives à l’analyse de la connaissance [Sign and object (II): Questions concerning knowledge analysis]. Annales de Didactique et de Sciences Cognitives, 6(1), 165–196.

  • Duval, R. (2001). The cognitive analysis of problems of comprehension in the learning of mathematics. Paper presented to the discussion group on Semiotics and Mathematics Education at the 25th Conference of the International Group for the Psychology of Mathematics Education, Ütrecht.

  • Duval, R. (2003). Décrire, visualiser ou raisonner: Quels “apprentissages premiers” de l’activité mathématique? [Describing, visualizing and reasoning: What “early learning” in mathematical activity?] Annales de Didactique et de Sciences Cognitives, 8(1), 13–62.

  • Duval, R. (2006a). Trasformazioni di rappresentazioni semiotiche e prassi di pensiero in matematica [Transformations of semiotic representations and mathematical thinking practice]. La matematica e la sua didattica, 20(4), 585–619.

    Google Scholar 

  • Duval, R. (2006b). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131.

    Article  Google Scholar 

  • Duval, R. (2006c). Quelle sémiotique pour l’analyse de l’activité et des productions mathématiques? [What semiotics for the analysis of mathematical activity and productions?] In L. Radford & B. D’Amore (Eds.), Semiotics, Culture and Mathematical Thinking [Special Issue]. Revista Latinoamericana de Investigación en Matemática Educativa, 9(1), 45–81.

  • Duval, R. (2009). «Objet»: Un mot pour quatre ordres de réalité irréductibles? [Object: A word for four irreducible orders of reality?] In J. Baillé (Ed.), Du mot au concept: Objet (pp. 79–108). Grenoble: PUG.

  • Duval, R. (2011). Ver e ensinar a matemática de outra forma - Entrar no modo matemático de pensar: Os registros de representações semióticas (M. A. Dias, Trans.) [Seeing and teaching mathematics in another way - Introducing the mathematical way of thinking: The registers of semiotic representations]. São Paulo: PROEM.

  • Duval, R. (2013). Les problèmes dans l’acquisition des connaissances mathématiques: Apprendre comment les poser pour devenir capable de les résoudre? [Problem solving in learning mathematics: Learn how to construct problems first in order to became able to solve them?] Revemat: Revista Eletrônica de Educação Matemática, 8(1), 1–45.

  • Eco, U. (1976). A theory of semiotics. Bloomington: Indiana University Press.

    Book  Google Scholar 

  • Font, V., Godino, J. D., & D’Amore, B. (2007). An onto-semiotic approach to representations in mathematical education. For the learning of mathematics, 27(2), 2–7 and 14.

  • Font, V., Godino, J. D., & D’Amore, B. (2010). Representations in mathematics education: An onto-semiotic approach. International Journal for Studies in Mathematics Education, 2(1), 58–86.

    Google Scholar 

  • Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97–124.

    Article  Google Scholar 

  • Frege, G. (1892). Über sinn und bedeutung [On sense and meaning]. Zeitschrift für Philosophie und philosophische Kritik, 100(1), 25–50.

    Google Scholar 

  • Godino, J. D., & Batanero, C. (1994). Significado institucional y personal de los objetos matemáticos [Institutional and personal meaning of mathematical objects]. Recherches en Didactique des Mathématiques, 14(3), 325–355.

    Google Scholar 

  • Godino, J. D., & Batanero, C. (1998). Clarifying the meaning of mathematical objects as a priority area of research in mathematics education. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics Education as a research domain: A search for identity (pp. 177–195). Dordrecht: Kluwer AP.

  • Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM–The International Journal on Mathematics Education, 39(1–2), 127–135.

  • Hjelmslev, L. (1961). Prolegomena to a theory of language. Madison: University of Wisconsin. (Original work published 1943).

  • Hossack, K. (1991). Access to mathematical objects. Crítica: Revista Hispanoamericana de Filosofía, 23(68), 157–181.

    Google Scholar 

  • Husserl, E. (1970). Logical investigations (J. N. Findlay, Trans.). London: Routledge and Kegan Paul. (Original work published 1900–1901).

  • Janvier, C. (Ed.). (1987). Problems of representation in the teaching and learning of mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Lanfredini, R. (Ed.). (2006). A priori materiale: Uno studio fenomenologico [The material a priori: A phenomenological study]. Milan: Guerini e Associati.

  • Otte, M. (2003). Does mathematics have objects? In what sense? Synthese, 134(1–2), 181–216.

    Article  Google Scholar 

  • Panza, M. (2010). Is the notion of mathematical object an historical notion? Amazônia: Revista de Educação em Ciências e Matemáticas, 6, 56–80.

  • Peirce, C. S. (1960). Collected papers. Cambridge: Belknap Press of Harvard University Press.

    Google Scholar 

  • Piaget, J. (1936). La naissance de l’intelligence chez l’enfant [The origins of intelligence in children]. Neuchâtel-Paris: Delachaux et Niestlé.

  • Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: First steps towards a conceptual framework. ZDM Mathematics Education, 40(2), 165–178.

  • Radford, L. (1998a). On culture and mind, a post-Vygotskian semiotic perspective, with an example from Greek mathematical thought. Paper presented at the 23rd Annual Meeting of the Semiotic Society of America, Victoria College, University of Toronto.

  • Radford, L. (1998b). On signs and representations: A cultural account. Scientia Paedagogica Experimentalis, 35(1), 277–302.

  • Radford, L. (1999). The rhetoric of generalization. Proceedings of the 23rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 89–90). Haifa: Technion-Israel Institute of Technology.

  • Radford, L. (2000). Students’ processes of symbolizing in algebra: A semiotic analysis of the production of signs in generalizing tasks. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 81–88). Japan: Hiroshima University.

    Google Scholar 

  • Radford, L. (2002a). The seen, the spoken and the written: A semiotic approach to the problem of objectification of mathematical knowledge. For the Learning of Mathematics, 22(2), 14–23.

    Google Scholar 

  • Radford, L. (2002b). The object of representations: Between wisdom and certainty. In F. Hitt (Ed.), Representations and Mathematics Visualization (pp. 219–240). Mexico: Departamento de matemática educativa Cinvestav-IPN.

    Google Scholar 

  • Radford, L. (2004). Cose sensibili, essenze, oggetti matematici ed altre ambiguità [Sensible things, essences, mathematical objects and other ambiguities]. La matematica e la sua didattica, 18(1), 4–23.

    Google Scholar 

  • Radford, L. (2005). La generalizzazione matematica come processo semiotico [Mathematical generalization as a semiotic process]. La matematica e la sua didattica, 19(2), 191–213.

    Google Scholar 

  • Radford, L. (2006). Elementos de una teoría cultural de la objetivación [Elements of a cultural theory of objectification]. In L. Radford & B. D’Amore (Eds.), Semiotics, Culture and Mathematical Thinking [Special Issue]. Revista Latinoamericana de Investigación en Matemática Educativa, 9(1), 103–129.

  • Radford, L. (2010). The eye as a theoretician: Seeing structures in generalizing activities. For the Learning of Mathematics, 30(2), 2–7.

    Google Scholar 

  • Radford, L. (2013a). Three key concepts of the theory of objectification: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, 2(1), 7–44.

    Google Scholar 

  • Radford, L. (2013b). En torno a tres problemas de la generalización [Concerning three problems of generalization]. In L. Rico, M. C. Cañadas, J. Gutiérrez, M. Molina, & I. Segovia (Eds.), Investigación en Didáctica de la Matemática. Homenaje a Encarnación Castro (pp. 3–12). Granada, Spain: Editorial Comares.

    Google Scholar 

  • Radford, L. (2014). De la teoría de la objetivación [On the theory of objectification]. Revista Latinoamericana de Etnomatemática, 7(2), 132–150.

    Google Scholar 

  • Radford, L. (2015). Introduction: The phenomenological, epistemological, and semiotic components of generalization. PNA, 9(3), 129–141.

    Google Scholar 

  • Rojas Garzón, P. J. (2014). Articulación de saberes matemáticos: Representaciones semióticas y sentidos [Articulation of mathematical knowledge: Semiotic representations and senses]. Bogotá: Editorial of the Universidad Distrital Francisco José de Caldas.

  • Roth, W.-M., & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning. Rotterdam, The Netherlands: Sense Publishers.

  • Sáenz-Ludlow, A., & Presmeg, N. (2006). Guest editorial: Semiotic perspectives on learning mathematics and communicating mathematically. Educational Studies in Mathematics, 61(1), 1–10.

  • Santi, G. (2010). Changes in meaning of mathematical objects due to semiotic transformations: A comparison between semiotic perspectives (Doctoral dissertation), University of Palermo, Italy. Retrieved from http://www.dm.unibo.it/rsddm/it/articoli/santi/santi.htm.

  • Saussure, F. de (1959). Course in general linguistics (W. Baskin, Trans.). New York: Philosophical Library. (Original work published 1916).

  • Spencer, J. (2012). Ways of being. Philosophy Compass, 7(12), 910–918.

    Article  Google Scholar 

  • Steinbring, H. (2006). What makes a sign a mathematical sign? – An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61(1–2), 133–162.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maura Iori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iori, M. Objects, signs, and representations in the semio-cognitive analysis of the processes involved in teaching and learning mathematics: A Duvalian perspective. Educ Stud Math 94, 275–291 (2017). https://doi.org/10.1007/s10649-016-9726-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-016-9726-3

Keywords

Navigation