Skip to main content
Log in

Feather mercury concentrations in omnivorous and granivorous terrestrial songbirds in Southeast Michigan

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Sublethal exposure to methylmercury (MeHg) can have consequences for the reproductive, neurological, and physiological health of birds. Songbirds, regardless of trophic position, are often exposed to mercury (Hg) and may be at risk for health effects – especially if they inhabit a place that is subject to high Hg atmospheric deposition and/or have local conditions that are prone to methylation. This study investigates Hg concentrations in terrestrial songbirds of Southeast Michigan, where historical and present-day anthropogenic emissions of heavy metals are elevated. We collected tail feather samples from 223 songbirds across four different species during summer and fall of 2018 and 2019. The mean (±SE) Hg concentration across all samples was 103 ± 3.43 ng/g of dry feather weight. Mercury concentration varied significantly among species, and by age and site in some species, but not by sex. Mean concentrations were nearly seven times higher in two omnivore species, American robin (Turdus migratorius) and European starling (Sturnus vulgaris), than in the two granivore species, American goldfinch (Spinus tristus) and house sparrow (Passer domesticus). Juveniles had higher feather Hg concentrations than adults in all species except American goldfinches - which feed their young primarily seeds, further supporting a role of diet in exposure. We also found a negative correlation between Hg concentration and body condition in American robins, but further research is needed to verify this relationship. While our sample concentrations do not exceed the threshold for sublethal effects, our findings provide insight into the patterns of Hg concentrations in terrestrial songbirds, which may help in understanding Hg exposure pathways, bioaccumulation and risks in terrestrial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Raw data will be made available via Oregon State University’s public data repository “ScholarsArchive” upon publication.

References

  • Ackerman JT, Eagles-Smith CA, Herzog MP (2011) Bird mercury concentrations change rapidly as chicks age: toxicological risk is highest at hatching and fledging. Environ Sci Technol 45(12):5418–5425. https://doi.org/10.1021/es200647g

    Article  CAS  Google Scholar 

  • Ackerman JT, Hartman CA, Herzog MP (2019) Mercury contamination in resident and migrant songbirds and potential effects on body condition. Environ Pollut 246:797–810. https://doi.org/10.1016/j.envpol.2018.11.060

    Article  CAS  Google Scholar 

  • Ackerman JT, Eagles-Smith CA, Takekawa JY, Bluso JD, Adelsbach TL (2008) Mercury concentrations in blood and feathers of prebreeding Forster’s Terns in relation to space use of San Francisco Bay, California, USA, habitats. Environ Toxicol Chem 27(4):897–908

    Article  CAS  Google Scholar 

  • Ackerman JT, Overton CT, Casazza ML, Takekawa JY, Eagles-Smith CA, Keister RA, Herzog MP (2012) Does mercury contamination reduce body condition of endangered California clapper rails? Environ Pollut 162:439–448. https://doi.org/10.1016/j.envpol.2011.12.004

    Article  CAS  Google Scholar 

  • Adams EM, Sauer AK, Lane O, Regan K, Evers DC (2020) The effects of climate, habitat, and trophic position on methylmercury bioavailability for breeding New York songbirds. Ecotoxicology 29(10):1843–1861

    Article  CAS  Google Scholar 

  • Bhavsar SP, Gewurtz SB, McGoldrick DJ, Keir MJ, Backus SM (2010) Changes in mercury levels in Great Lakes fish between 1970s and 2007. Environ Sci Technol 44(9):3273–3279

    Article  CAS  Google Scholar 

  • Burgess NM, Evers DC, Kaplan JD (2005) Mercury and other contaminants in common loons breeding in Atlantic Canada. Ecotoxicology 14:241–252. https://doi.org/10.1007/s10646-004-6271-0

    Article  CAS  Google Scholar 

  • Bottini CLJ, MacDougall-Shackleton SA, Branfireun BA, Hobson KA. (2021) Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci Total Environ 775:145739 https://doi.org/10.1016/j.scitotenv.2021.145739

  • Brasso RL, Cristol DA (2007) Effects of mercury exposure on the reproductive success of tree swallows (Tachycinea bicolor). Ecotoxicology 17:133–141. https://doi.org/10.1007/s10646-007-0163-z

    Article  CAS  Google Scholar 

  • Brasso RL, Rittenhouse KA, Winder VL (2020) Do songbirds in wetlands show higher mercury bioaccumulation relative to conspecifics in non-wetland habitats? Ecotoxicology 29(8):1183–1194. https://doi.org/10.1007/s10646-020-02160-0

    Article  CAS  Google Scholar 

  • Brzęk P, Kohl KD, Caviedes-Vidal E, Karasov WH (2009) Developmental adjustments of house sparrow (Passer domesticus) nestlings to diet composition. J Exp Biol 212:1284–1293. https://doi.org/10.1242/jeb.023911

    Article  CAS  Google Scholar 

  • Cabe PR (2020) European Starling (Sturnus vulgaris), version 1.0. In Birds of the World (SM Billerman, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA https://doi.org/10.2173/bow.eursta.01

  • Carravieri, A, Vincze, O, Bustamente, P, Ackerman, J, Adams, E, Angelier, A, Chastel, O, Cherel, Y, Gilg, O, Golubova, E, Kitayski, A, Luff, K, Seewagen, L, Strom, H, Will, A, Yannic, G, Girauldeau, M, and J Fort (2022) Quantitative meta-analysis reveals no association between mercury contamination and body condition in birds. Biol Rev. https://doi.org/10.1111/brv.12840

  • Cooper Z, Bringolf R, Cooper R, Loftis K, Bryan AL, Martin JA (2017) Heavy metal bioaccumulation in two passerines with differing migration strategies. Sci. Total Environ 592(15):25–32. https://doi.org/10.1016/j.scitotenv.2017.03.055

    Article  CAS  Google Scholar 

  • Condon AM, Cristol DA (2009) Feather growth influences blood mercury level of young songbirds. Environ. Toxicol. Chem 28(2):395–401

    Article  CAS  Google Scholar 

  • Cristol DA, Evers DC (2020) The impact of mercury on North American songbirds: effects, trends, and predictive factors. Ecotoxicology 29(8):1107–1116. pp

    Article  CAS  Google Scholar 

  • Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320(5874):335. https://doi.org/10.1126/science.1154082

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983. https://doi.org/10.1021/es305071v

    Article  CAS  Google Scholar 

  • Eagles-Smith CA, Ackerman JT, Adelsbach TL, Takekawa JY, Miles AK, Keister RA (2008) Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA. Environ Toxicol Chem 27(10):2136–2153

    Article  CAS  Google Scholar 

  • Edmonds ST, Evers DC, Cristol DA et al. (2010) Geographic and seasonal variation in mercury exposure of the declining rusty blackbird. Condor 112:789–799. https://doi.org/10.1525/cond.2010.100145

    Article  Google Scholar 

  • Evers DC, Burgess NM, Champoux L, Hoskins B, Major A, Goodale WM, Taylor RJ, Poppenga R, Daigle T (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14:193–221. https://doi.org/10.1007/s10646-004-6269-7

    Article  CAS  Google Scholar 

  • Evers DC, Savoy L, DeSorbo CR, Yates D, Hanson W, Taylor KM, Siegel L, Cooley JH, Bank M, Major A, Munney K, Vogel HS, Schoch N, Pokras M, Goodale W, Fair J (2008) Adverse effects from environmental mercury on common breeding loons. Ecotoxicology 17:69–81

    Article  CAS  Google Scholar 

  • Evers DC, Wiener JG, Basu N, Bodaly RA, Morrison HA, Williams KA (2011a) Mercury in the Great Lakes region: bioaccumulation, spatiotemporal patterns, ecological risks, and policy. Ecotoxicology 20:1487–1499. https://doi.org/10.1007/s10646-011-0784-0

    Article  CAS  Google Scholar 

  • Evers DC, Williams KA, Meyer MW, Scheuhammer AM, Schoch N, Gilbert AT, Siegel L, Taylor RJ, Poppenga R, Perkins CR (2011b) Spatial gradients of methylmercury for breeding common loons in the Laurentian Great Lakes region. Ecotoxicology 20: 1609–1625 https://doi.org/10.1007/s10646-011-0753-7

  • Fournier F, Karasov WH, Kenow KP, Meyer MW, Hines RK (2002) The oral bioavailability and toxicokinetics of methylmercury in common loon (Gavia immer) chicks. Comp Biochem Physiol A Mol Integr Physiol 133(3):703–714

    Article  Google Scholar 

  • Gill F (2007) Ornithology. Freedman, New York

  • Hallinger KK, Cornell KL, Brasso RL, Cristol DA (2011) Mercury exposure and survival in free-living tree swallows (Tachycineta bicolor). Ecotoxicology 20:39–46. https://doi.org/10.1007/s10646-010-0554-4

    Article  CAS  Google Scholar 

  • Hallinger KK, Cristol DA (2011) The role of weather in mediating the effect of mercury exposure on reproductive success in tree swallows. Ecotoxicology 20:1368–1377. https://doi.org/10.1007/s10646-011-0694-1

    Article  CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2006) Methylmercury in freshwater fish linked to atmospheric mercury deposition. Environ Sci Technol. 40:7764–7770

    Article  CAS  Google Scholar 

  • Howell JC (1942) Notes on the nesting habits of the American Robin (Turdus migratorius L.). American Midland Naturalist 529–603.

  • Jackson AK, Evers DC, Adams EM, Cristol DA, Eagles-Smith C, Edmonds ST, Gray CE, Hoskins B, Lane OP, Sauer A, Tear T (2015) Songbirds as sentinels of mercury in terrestrial habitats of eastern North America. Ecotoxicology 24:453–467. https://doi.org/10.1007/s10646-014-1394-4

    Article  CAS  Google Scholar 

  • Jackson AK, Evers DC, Etterson MA, Condon AM, Folsom SB, Detweiler J, Schmerfeld J, Cristol DA (2011a) Mercury exposure affects the reproductive success of a free-living terrestrial Songbird, the Carolina Wren (Thryothorus ludovicianus). The Auk 128(4):759–769. https://doi.org/10.1525/auk.2011.11106

    Article  Google Scholar 

  • Jackson AK, Evers DC, Folsom SB, Condon AM, Diener J, Goodrick LF, McGann AJ, Schmerfeld J, Cristol DA (2011b) Mercury exposure in terrestrial birds far downstream of an historical point source. Environ Pollut 159:3302–3308

    Article  CAS  Google Scholar 

  • Jackson AK, Eagles-Smith CA, Emery C (2019) Spatial variation in aquatic invertebrate and riparian songbird mercury exposure across a river-reservoir system with legacy of mercury contamination. Ecotoxicology 29:1195–1204. https://doi.org/10.1007/s10646-019-02043-z

    Article  CAS  Google Scholar 

  • Jankowiak Ł, Wysocki D, Greño J (2016) Survival and site fidelity of Urban Blackbirds Turdus merula—Comparison of Cormack-Jolly-Seber and Barker Models. Acta Ornithologica 51(2):189–197

    Article  Google Scholar 

  • Keeler GJ, Dvonch JT (2005) Atmospheric mercury: a decade of observations in the great lakes. In: Pirrone, N and Mahaffey, K, editors. Dynamics of mercury pollution on regional and global scales: atmospheric processes and human exposures around the world. Springer 611–632

  • Keeler GJ, Landis MS, Norris GA, Christianson EM, Dvonch JT (2006) Sources of mercury wet deposition in eastern Ohio, USA. Environ. Sci Technol. 40:5874–5881

    Article  CAS  Google Scholar 

  • Keller RH, Xie L, Buchwalter DB, Franzreb KE, Simons TR (2014) Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations. Ecotoxicology 23:304–316. https://doi.org/10.1007/s10646-013-1174-6

    Article  CAS  Google Scholar 

  • Knutsen CJ, Varian-Ramos CW (2019) Explaining variation in Colorado songbird blood mercury using migratory behavior, foraging guild, and diet. Ecotoxicology https://doi.org/10.1007/s10646-019-02141-y

  • Kopec AD, Bodaly RA, Lane OP, Evers DC, Leppold AJ, Mittelhauser GH (2018) Elevated mercury in blood and feathers of breeding marsh birds along the contaminated lower Penobscot River, Maine, USA. Sci. Total Environ 634:1563–1579 https://doi.org/10.1016/j.scitotenv.2018.03.223

  • Landis MS, Keeler GJ (2002) Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study. Environ Sci Technol 36:4518–4524

    Article  CAS  Google Scholar 

  • Lane O, Adams EM, Pau N, O’Brien KM, Regan K, Farina M, Schneider-Moran T, Zarudsky J (2020). Long-term monitoring of mercury in adult saltmarsh sparrows breeding in Maine, Massachusetts and New York, USA 2000–2017. Ecotoxicology https://doi.org/10.1007/s10646-020-02180-w

  • Lewis CA, Cristol DA, Swaddle JP, Varian-Ramos CW, Zwollo P (2013) Decreased immune response in Zebra Finches exposed to sublethal doses of mercury. Arch Environ Contam Toxicol 64:327–336. https://doi.org/10.1007/s00244-012-9830-z

    Article  CAS  Google Scholar 

  • Lindsey AA (1939) Food of the Starling in central New York state. Wilson Bull 51:176–182

    Google Scholar 

  • Low KE, Ramsden DK, Jackson AK, Emery C, Robinson WD, Randolph J, Eagles-Smith CA (2019) Songbird feathers as indicators of mercury exposure: high variability and low predictive power suggest limitations. Ecotoxicology https://doi.org/10.1007/s10646-019-02052-y

  • Lowther PE, Cink CL (2020) House Sparrow (Passer domesticus), version 1.0. In Birds of the World (SM Billerman, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA https://doi.org/10.2173/bow.houspa.01

  • Liu B, Keeler GJ, Dvonch JT, Barres JA, Lynam MM, Marsik FJ, Morgan JT (2010) Urban-rural differences in atmospheric mercury speciation. AtmosEnviron 44 :2013–2023 https://doi.org/10.1016/j.atmosenv.2010.02.012

  • McGraw KJ, Middleton AL (2020) American Goldfinch (Spinus tristis), version 1.0. In Birds of the World (PG Rodewald, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA https://doi.org/10.2173/bow.amegfi.01

  • Miller EK, VanArsdale A, Keeler JG, Chalmers A, Poissant L, Kamman N, Brulotte R (2005) Estimation and mapping of wet and dry mercury deposition across northeastern North America. Ecotoxicology 14:53–70

    Article  CAS  Google Scholar 

  • Navis, CJ (2017) The impact of urban centers on American goldfinch (Spinus tristis) overwintering at high latitudes. Eastern Michigan University. MS Thesis.

  • Newton I (1973) Finches. Taplinger. Englewood Cliffs, NJ

  • Peterson SH, Ackerman JT, Toney M, Herzog MP (2019) Mercury concentrations vary within and among individual bird feathers: a critical evaluation and guidelines for feather use in mercury monitoring programs. Environ Toxicol Chem 38(6):1164–1187

    Article  CAS  Google Scholar 

  • Pyle, P (1997). Identification guide to North American birds: a compendium of information on identifying, ageing, and sexing” near-passerines” and passerines in the hand. Slate Creek Press

  • Rimmer CC, Miller EK, McFarland KP, Taylor RJ, Faccio SD (2010) Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19:697–709

    Article  CAS  Google Scholar 

  • Risch MR, Gay DA, Fowler KK, Keeler GJ, Backus SM, Blanchard P, Barres JA, Dvonch JT (2012) Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002–2008. Environ Pollut 161:261–271

    Article  CAS  Google Scholar 

  • Risch MR, Kenski DM, Gay DA (2014) A Great Lakes Atmospheric Mercury Monitoring network: Evaluation and design. Atmos Environ 85:109–122. https://doi.org/10.1016/j.atmosenv.2013.11.050

    Article  CAS  Google Scholar 

  • Robinson SA, Lajeunesse MJ, Forbes MR (2012) Sex differences in mercury contamination of birds: testing multiple hypotheses with meta-analysis. Environ. Sci Technol 46(13):7094–7101. https://doi.org/10.1021/es204032m

    Article  CAS  Google Scholar 

  • Russell DN (1971) Food habits of the starling in Eastern Texas. The Condor 73(3):369–372. https://doi.org/10.2307/1365766

    Article  Google Scholar 

  • Scoville SA, Lane OP (2013) Cerebellar abnormalities typical of methylmercury poisoning in a fledged Saltmarsh Sparrow, Ammodramus caudacutus’. Bull Environ Contam Toxicol 90:616–620. https://doi.org/10.1007/s00128-013-0974-y

    Article  CAS  Google Scholar 

  • Seewagen CL (2010) Threats of environmental mercury to birds: knowledge gaps and priorities for future research. Bird Conserv Int 20(2):112–123. https://doi.org/10.1017/S095927090999030X

    Article  Google Scholar 

  • Stenhouse IJ, Adams EM, Phillips LM, Weidensaul S, McIntyre CL (2019) A preliminary assessment of mercury in the feathers of migratory songbirds breeding in the North American subarctic. Ecotoxicology https://doi.org/10.1007/s10646-019-02105-2

  • Stracey CM, Robinson SK (2012) Are urban habitats ecological traps for a native songbird? Season‐long productivity, apparent survival, and site fidelity in urban and rural habitats. J Avian Biol 43(1):50–60

    Article  Google Scholar 

  • Szalinska E (2020) A Review of Heavy Metals Contamination Within the Laurentian Great Lakes. In: Crossman J, Weisener C (eds) Contaminants of the Great Lakes. The Handbook of Environmental Chemistry. 101. Springer, Cham https://doi.org/10.1007/698_2020_490

  • Townsend JM, Rimmer CC, Driscoll CT, McFarland KP, Iñigo-Elias E (2013) Mercury concentrations in tropical resident and migrant songbirds on Hispaniola. Ecotoxicology 22: 86–93 https://doi.org/10.1007/s10646-012-1005-1

  • United States. Environmental Protection Agency (2002) Method 1631:Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. Revision E. US EPA, Washington DC. https://www.epa.gov/sites/production/files/2015-08/documents/method_1631e_2002.pdf

  • Vanderhoff N, Pyle P, Patten MA, Sallabanks R, James FC (2020) American Robin (Turdus migratorius), version 1.0. In Birds of the World (PG Rodewald, Editor). Cornell Lab of Ornithology, Ithaca, NY, USA https://doi.org/10.2173/bow.amerob.01

  • Varian-Ramos CW, Swaddle JP, Cristol DA (2014) Mercury Reduces Avian Reproductive Success and Imposes Selection: An Experimental Study with Adult- or Lifetime-Exposure in Zebra Finch PLoS ONE 9(4) https://doi.org/10.1371/journal.pone.0095674

  • Warner SE, Shriver WG, Olsen BJ, Greenberg RG, Taylor RJ (2012) Mercury in wing and tail feathers of hatch-year and adult Tidal Marsh Sparrows. Arch Environ Contam Toxicol 63:586–593. https://doi.org/10.1007/s00244-012-9783-2

    Article  CAS  Google Scholar 

  • Weseloh DVC, Moore DJ, Hebert CE, De Solla SR, Braune BM, McGoldrick DJ (2011) Current concentrations and spatial and temporal trends in mercury in Great Lakes Herring Gull eggs, 1974–2009. Ecotoxicology 20:1644–1658. https://doi.org/10.1007/s10646-011-0755-5

    Article  CAS  Google Scholar 

  • Wheelwright NT (1986) The diet of American Robins: An analysis of U.S. Biological Survey Records. The Auk 103(4):710–725. http://www.jstor.org/stable/4087182

    Article  Google Scholar 

  • Whitney M, Cristol D (2017a) Impacts of sublethal mercury exposure on birds: a detailed review. Rev Environ Contam Toxicol 244:112–163. https://doi.org/10.1007/398_2017_4

    Article  CAS  Google Scholar 

  • Whitney M, Cristol D (2017b) Rapid depuration of mercury in songbirds accelerated by feather molt. Environ Toxicol Chem 36(11):3120–3126

    Article  CAS  Google Scholar 

  • Wolf SE, Swaddle JP, Cristol DA, Buchser WJ (2017) Methylmercury exposure reduces the auditory brainstem response of Zebra Finches (Taeniopygia Guttata). JARO 18:569–579. https://doi.org/10.1007/s10162-017-0619-7

    Article  Google Scholar 

Download references

Acknowledgements

We thank Brian Majestic (University of Denver), Abir Biswas (The Evergreen State College), Lucas Hawkins, and Diana Babi (Tekran) for providing guidance on laboratory methods. Garth Herring (USGS) provided valuable feedback on an earlier draft. Selena Chiparus, Dawson Bradley, and Robert Miner assisted with sample collection. Eastern Michigan University, University of Michigan - Flint, Mott Community College and Flint City Parks allowed access to study sites.

Author contributions

S.S.B. performed laboratory and data analyses, wrote manuscript; D.L.Z. conceived of project, performed field work, edited manuscript; K.J.G. performed field work, edited manuscript; L.E.G. trained personnel, performed laboratory analyses, provided funding, edited manuscript; J.M.C. conceived of project, trained personnel, provided funding, performed field work and edited manuscript.

Funding

This work was supported in part by the Undergraduate Research Stimulus Program (URSP), Meta Hellwig and faculty research awards from Eastern Michigan University in addition to the Colorado College Natural Sciences Division and Grant Lyddon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie M. Cornelius.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Animal handling and sampling methods were approved by the Eastern Michigan University Institutional Animal Care and Use (IACUC) protocols # 2018-089 and 2015-072, and samples were collected after obtaining all relevant permits from the State of Michigan and the USGS Bird Banding Lab.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajracharya, S.S., Zahor, D.L., Glynn, K.J. et al. Feather mercury concentrations in omnivorous and granivorous terrestrial songbirds in Southeast Michigan. Ecotoxicology 31, 797–807 (2022). https://doi.org/10.1007/s10646-022-02545-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-022-02545-3

Keywords

Navigation