Skip to main content
Log in

Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO-NPs) are widely used in consumer products, which have raised concerns about their impact on the human health and environment. In this study, Allium cepa were treated with 5 and 50 μg/mL ZnO-NPs solutions for 12, 24, and 36 h, respectively. The cytotoxic and genotoxic effects of ZnO-NPs in root meristems of Allium cepa cells were characterized by cell membrane integrity, metabolic activity, reactive oxygen species (ROS) accumulation, DNA damage, chromosome aberration, and cell cycle progression. Substantially elevated Zn levels were observed in the cytoplasmic and nuclear fractions, and the accumulation of zinc in the nuclear fraction (up to 9764 μg/g) was one magnitude greater than that in the cytoplasm (up to 541 μg/g). The complexation of Zn2+ with diethylene triamine pentacetic acid (DTPA) was performed to explicate the respective contribution of insoluble particles or Zn2+ to ZnO-NPs toxicity. We found that the inhibition of root growth accounted for 24.2% or 36.1% when the plants were exposed to Zn2+ that released from 5 or 50 μg/mL of ZnO-NPs for 36 h, respectively, whereas the exposure to 5 or 50 μg/mL of insoluble particles resulted in 75.8% or 63.9% of inhibition, respectively. These findings demonstrated that adverse effects exerted not just by Zn2+ released from ZnO-NPs, but also directly from the nanoparticles. These findings contribute to a better understanding of ZnO-NPs cytotoxicity and genotoxicity in plant cells and provide valuable information for further research on the phytotoxic mechanisms of ZnO-NPs.

Highlights

  • Substantially elevated Zn levels were observed in the cytoplasmic and nuclear fractions of A. cepa roots.

  • ZnO-NPs inhibited plant growth and induced severe cytotoxicity and genotoxicity.

  • The toxicity of ZnO particles is higher than zinc ions released from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aaron B, Ron M, Nobuhiro S (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55(1):373–399

    Article  CAS  Google Scholar 

  • Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Hussain SM, Grover P (2009) In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 24(3):245–251

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Plascencia-villa G, Mukherjee A, Rico CM (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515–516:60–69

    Article  CAS  Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grownwheat. Journal of Nanoparticle Research 14(9):1125

    Article  CAS  Google Scholar 

  • Dev A, Srivastava AK, Karmakar S (2018) Nanomaterial toxicity for plants. Environ Chem Lett 16:85–100

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research 14(9):1125. https://doi.org/10.1007/s11051-012-1125-9

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2016) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ 589:11–24

    Article  CAS  Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2018) Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ 644:770–780

    Article  CAS  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186(1):952–955

    Article  CAS  Google Scholar 

  • Ghosh M, Bhadra S, Adegoke A, Bandyopadhyay M, Mukherjee A (2015) MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation. Mutat Res 774:49–58

    Article  CAS  Google Scholar 

  • Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res/Genet Toxicol Environ Mutagen 807:25–32

    Article  CAS  Google Scholar 

  • Gichner T, Patková Z, Száková J, Žnidar I, Mukherjee A (2008) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62(2):113–119

    Article  CAS  Google Scholar 

  • Goix S, Lévêque T, Xiong TT, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194

    Article  CAS  Google Scholar 

  • Gottschalk F, Ort C, Scholz RW, Nowack B (2011) Engineered nanomaterials in rivers--exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159(12):3439–3445

    Article  CAS  Google Scholar 

  • Grant WF (1982) Chromosome aberration assays in Allium. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res/Fundam Mol Mech Mutagen 99(3):273–291

    CAS  Google Scholar 

  • Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brochhausen C, Mailänder V, Tremel W, Brieger J (2015) Genotoxic effects of zinc oxide nanoparticles. Nanoscale 7(19):8931–8938

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692

    Article  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1–3):613–621

    Article  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red s nanoconjugates in Arabidopsis thaliana. Nano Letters 10(7):2296–2302

    Article  CAS  Google Scholar 

  • Lee WL, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity ofmetal oxide nanoparticles to Arabidopsis thaliana. Environmental Toxicology and Chemistry 29(3):669–675

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    Article  CAS  Google Scholar 

  • Lin DH, Jing JI, Tian XL, Liu N, Yang K, Fengchang WU, Wang ZYA (2009) Environmental behavior and toxicity of engineered nanomaterials. Chin J 54(23):3590–3604

    Google Scholar 

  • Liu D, Jiang W, Maoxie LI (1992) Effects of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas 117(1):23–29

    Article  CAS  Google Scholar 

  • Lubick N (2008) Nanosilver toxicity: ions, nanoparticles—or both? Environ Sci Technol 42(23):8617–8617

    Article  CAS  Google Scholar 

  • Maluszynska J, Juchimiuk J (2005) Plant genotoxicity: a molecular cytogenetic approach in plant bioassays. Arch Ind Hyg Toxicol 56(2):177–184

    Google Scholar 

  • Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157(11):3034–3041

    Article  CAS  Google Scholar 

  • Michaelis M, Fischer C, Colombi Ciacchi L, Luttge A (2017) Variability of zinc oxide dissolution rates. Environ Sci Technol 51(8):4297–4305

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964

    Article  CAS  Google Scholar 

  • Patil BC, Bhat GI (1992) A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternatea L. Bus Inf Syst Eng 2(4):249–258

    Google Scholar 

  • Qin R, Wang C, Chen D, Björn LO, Li S (2015) Copper-induced root growth inhibition of Allium cepa var. agrogarum L. involves disturbances in cell division and DNA damage. Environ Toxicol Chem 34(5):1045–1055

    Article  CAS  Google Scholar 

  • Qiu Q, Wang Y, Yang Z, Xin J, Yuan J, Wang J, Xin G (2011) Responses of different chinese flowering cabbage (Brassica parachinensis L.) cultivars to cadmium and lead stress: screening for Cd+Pb pollution-safe cultivars. CLEAN - Soil Air Water 39(11):925–932

    Article  CAS  Google Scholar 

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag 9:76–84

    Google Scholar 

  • Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60(1):97–104

    Article  CAS  Google Scholar 

  • Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(vi) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in/r Pisum sativum. Chemical Research in Toxicology 24(7):1040–1047

    Article  CAS  Google Scholar 

  • Rodríguez-Vargas JM, Ruiz-Magaña MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodríguez MI, Muñoz-Gámez JA, De Almodóvar MR, Siles E, Rivas AL, Jäättela M, Oliver FJ (2012) ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Research 22(7):1181–1198

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50

    Article  CAS  Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnOnanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicology 6(3):241–248

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69

    Article  CAS  Google Scholar 

  • Wang F, Jing X, Adams CA, Shi Z, Sun Y (2018) Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus. Environ Sci Pollut Res 25(24):23736–23747

    Article  CAS  Google Scholar 

  • Wang S, Liu H, Zhang Y, Xin H (2015) The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem 34(3):554–561

    Article  CAS  Google Scholar 

  • Wang X, Li B, Ma Y, Hua L (2010) Development of a biotic ligand model for acute zinc toxicity to barley root elongation. Ecotoxicol Environ Saf 73(6):1272–1278

    Article  CAS  Google Scholar 

  • Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH (2015) Effects of the size andmorphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environmental Science and Pollution Research 22(14):10452–10462

    Article  CAS  Google Scholar 

  • Xiong T, Dumat C, Dappe V, Vezin H, Schreck E, Shahid M, Pierart A, Sobanska S (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol 51:5242–5251

    Article  CAS  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2007) Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3(3):257–258

    Article  CAS  Google Scholar 

  • Xu Y, Wang C, Hou J, Dai S, Wang P, Miao L, Lv B, Yang Y, You G (2016) Effects of ZnO nanoparticles and Zn2+ on fluvial biofilms and the related toxicity mechanisms. Sci Total Environ 544:230–237

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Zhang D, Hua T, Xiao F, Chen C, Gersberg RM, Liu Y, Stuckey D, Ng WJ, Tan SK (2015a) Phytotoxicity and bioaccumulation of ZnO nanoparticles in Schoenoplectus tabernaemontani. Chemosphere 120:211–219

    Article  CAS  Google Scholar 

  • Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015b) Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22(14):11109–11117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant no. 31670266), the Guangdong Pearl River Scholar Funded Scheme (2012), the Science and Technology Program of Guangzhou, China (Grant no. 2014J4100053), and the Natural Science Foundation of Guangdong Province, China (Grant no. 2017A030313115) to Prof. Shaoshan Li. This work also received support from the Natural Science Foundation of China (Grant no. 41701572) and the Chinese Postdoctoral Science Foundation (Grant no. 2017M612684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoshan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Xiong, T., Zhang, T. et al. Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology 28, 175–188 (2019). https://doi.org/10.1007/s10646-018-2010-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-2010-9

Keywords

Navigation