Skip to main content
Log in

Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Dissimilatory arsenate reduction from arsenic (As)-bearing minerals into highly mobile arsenite is one of the key mechanisms of As release into groundwater. To detect the microbial diversity and As-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high As groundwater in the Hetao Plain of Inner Mongolia, China, three anaerobic arsenate-reducing bacteria were isolated and arrA and arsC gene-based clone libraries of four in situ groundwater samples were constructed. The strains IMARCUG-11(G-11), IMARCUG-C1(G-C1) and IMARCUG-12(G-12) were phylogenetically belonged to genera Paraclostridium, Citrobacter and Klebsiella, respectively. They could reduce >99% of 1 mM arsenate under anoxic conditions with lactate as a carbon source in 60 h, 72 h and 84 h, respectively. As far as we know, this was the first report of arsenate reduction by genus Paraclostridium. Compared with strain G-11 (arsC) and G-C1 (arsRBC), strain G-12 contained two incomplete ars operons (operon1: arsABC, operon2: arsBC), indicating that these strains might present different strategies to resist As toxicity. Phylogenetic analysis illuminating by the arrA genes showed that in situ arsenate-reducing bacterial communities were diverse and mainly composed of Desulfobacterales (53%, dominated by Geobacter), Betaproteobacteria (12%), and unidentified groups (35%). Based on the arsC gene analysis, the indigenous arsenate-reducing bacterial communities were mainly affiliated with Omnitrophica (88%) and Deltaproteobacteria (11%, dominated by Geobacter and Syntrophobacterales). Results of this study expanded our understanding of indigenous arsenic-reducing bacteria in high As groundwater aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137

    Article  CAS  Google Scholar 

  • Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, Thomas BC, Singh A, Wilkins MJ, Karaoz U (2016) Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun 7:13219

    Article  CAS  Google Scholar 

  • Anderson MT, Mitchell LA, Zhao L, Mobley HL (2018) Citrobacter freundii fitness during bloodstream infection. Sci Rep 8:11792

    Article  CAS  Google Scholar 

  • Bachate S, Cavalca L, Andreoni V (2009) Arsenic‐resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate‐reducing strains. J Appl Microbiol 107:145–156

    Article  CAS  Google Scholar 

  • Barringer JL, Reilly PA, Eberl DD, Blum AE, Bonin JL, Rosman R, Hirst B, Alebus M, Cenno K, Gorska M (2011) Arsenic in sediments, groundwater, and streamwater of a glauconitic coastal plain terrain, New Jersey, USA—chemical “fingerprints” for geogenic and anthropogenic sources. Appl Geochem 26:763–776

    Article  CAS  Google Scholar 

  • Branco R, Chung A-P, Morais PV (2008) Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24 T. BMC Microbiol 8:95

    Article  CAS  Google Scholar 

  • Cai X, Zhang Z, Yi N, Du H, Li Z, Cui Y (2016) Comparison of arsenate reduction and release by three As (V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. Chemosphere 161:200–207

    Article  CAS  Google Scholar 

  • Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G (2013) Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Fut Microbiol 8:753–768

    Article  CAS  Google Scholar 

  • Chang YC, Nawata A, Jung K, Kikuchi S (2012) Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil. J Ind Microbiol Biotechnol 39:37–44

    Article  CAS  Google Scholar 

  • Dai X, Li P, Tu J, Zhang R, Wei D, Li B, Wang Y, Jiang Z (2016) Evidence of arsenic mobilization mediated by an indigenous iron reducing bacterium from high arsenic groundwater aquifer in Hetao Basin of Inner Mongolia, China. Int Biodeterior Biodegrad 128:22–27

    Article  CAS  Google Scholar 

  • Deng Y (2008) Geochemical processes of high arsenic groundwater system at western Hetao Basin. China University of Geosciences (Wuhan)

  • Deng Y, Wang Y, Ma T (2009) Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl Geochem 24:587–599

    Article  CAS  Google Scholar 

  • Deng Y, Wang Y, Ma T, Yang H, He J (2011) Arsenic associations in sediments from shallow aquifers of northwestern Hetao Basin, Inner Mongolia. Environ Earth Sci 64:2001–2011

    Article  CAS  Google Scholar 

  • Devos DP, Ward NL (2014) Mind the PVCs. Environ Microbiol 16:1217–1221

    Article  Google Scholar 

  • Escudero LV, Casamayor EO, Chong G, Pedrós-Alió C, Demergasso C (2013) Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations. PLoS ONE 8:e78890

    Article  CAS  Google Scholar 

  • Fan H, Su C, Wang Y, Yao J, Zhao K, Wang G (2008) Sedimentary arsenite‐oxidizing and arsenate‐reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105:529–539

    Article  CAS  Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in south and southease Asia. Science 328:1123–1127

    Article  CAS  Google Scholar 

  • Ferreccio C, Sancha AM (2006) Arsenic exposure and its impact on health in Chile. J Health Popul Nutr 24:164–175

    Google Scholar 

  • Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, Ranganathan M, Thangavelu M, Basu P, Stolz JF (2008) Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Ann NY Acad Sci 1125:230–241

    Article  CAS  Google Scholar 

  • Guo H, Liu Z, Ding S, Hao C, Xiu W, Hou W (2015) Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environ Pollut 203:50–59

    Article  CAS  Google Scholar 

  • Guo H, Zhang B, Li Y, Berner Z, Tang X, Norra S, Stüben D (2011) Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environ Pollut 159:876–883

    Article  CAS  Google Scholar 

  • Héry M, Van Dongen B, Gill F, Mondal D, Vaughan D, Pancost R, Polya D, Lloyd J (2010) Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 8:155–168

    Article  CAS  Google Scholar 

  • Handley KM, Héry M, Lloyd JR (2009) Redox cycling of arsenic by the hydrothermal marine bacterium Marinobacter santoriniensis. Environ Microbiol 11:1601–1611

    Article  CAS  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman A, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606

    Article  CAS  Google Scholar 

  • Hungate R (1969) A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132

    Article  CAS  Google Scholar 

  • Jiang Z, Li P, Wang Y, Li B, Deng Y, Wang Y (2014) Vertical distribution of bacterial populations associated with arsenic mobilization in aquifer sediments from the Hetao plain, Inner Mongolia. Environmental Earth Sciences 71:311–318

    Article  CAS  Google Scholar 

  • Jyothsna TS, Tushar L, Sasikala C, Ramana CV (2016) Paraclostridium benzoelyticum gen. nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. Proposal of a new genus Paeniclostridium gen. nov. to accommodate Clostridium sordellii and Clostridium ghonii. Int J Syst Evolut Microbiol 66:1268–1274

    Article  CAS  Google Scholar 

  • Kary NE, Alizadeh Z (2016) Non-symbiotic association of Citrobacter freundii and Staphylococcus succinus with the entomopathogenic nematode Steinernema feltiae. J Entomological Soc Iran 36:111–119

    Google Scholar 

  • Kulp T, Hoeft S, Miller L, Saltikov C, Murphy J, Han S, Lanoil B, Oremland R (2006) Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. Appl Environ Microbiol 72:6514–6526

    Article  CAS  Google Scholar 

  • Lee DC, Kang H, Weerawongwiwat V, Kim B, Choi Y-W, Kim W (2013) Oceanobacillus chungangensis sp. nov., isolated from a sand dune. Int J Syst Evolut Microbiol 63:3666–3671

    Article  CAS  Google Scholar 

  • Li P, Jiang D, Li B, Dai X, Wang Y, Jiang Z, Wang Y (2014) Comparative survey of bacterial and archaeal communities in high arsenic shallow aquifers using 454 pyrosequencing and traditional methods. Ecotoxicology 23:1878–1889

    Article  CAS  Google Scholar 

  • Li P, Jiang Z, Wang Y, Deng Y, Van Nostrand JD, Yuan T, Liu H, Wei D, Zhou J (2017) Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater. Water Res 123:268–276

    Article  CAS  Google Scholar 

  • Li P, Wang Y, Jiang Z, Jiang H, Li B, Dong H, Wang Y (2013) Microbial diversity in high arsenic groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiol J 30:897–909

    Article  CAS  Google Scholar 

  • Liao VHC, Chu YJ, Su YC, Hsiao SY, Wei CC, Liu C-W, Liao C-M, Shen W-C, Chang F-J (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contaminant Hydrology 123:20–29

    Article  CAS  Google Scholar 

  • Liu X, Gu Q, Liao C, Yu X (2014) Ehancing butanol tolerance and preventing degeneration in Clostridium acetobutylicum by 1-butanol-glycerol storage during long-term preservation. Biomass Biogenergy 69:192–197

    Article  CAS  Google Scholar 

  • Liu X, Shi L, Gu J-D (2018) Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnol Adv 36:1815–1827

    Article  CAS  Google Scholar 

  • Lv W, Yu Z (2013) Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample. J Appl Microbiol 114:1001–1007

    Article  CAS  Google Scholar 

  • Macur RE, Jackson CR, Botero LM, Mcdermott TR, Inskeep WP (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38:104–111

    Article  CAS  Google Scholar 

  • Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57

    Article  CAS  Google Scholar 

  • Maeda S, Ohki A, Miyahara K, Naka K, Higashi S (1992) Metabolism of methylated arsenic compounds by arsenic-resistane bacteria (Klebsiella oxytoca and Xanthomonas sp.). Appl Organometallic Chem 6:415–420

    Article  CAS  Google Scholar 

  • Malasarn D, Saltikov C, Campbell K, Santini J, Hering J, Newman D (2004) arrA is a reliable marker for As (V) respiration. Science 306:455–455

    Article  CAS  Google Scholar 

  • Maleki A, Pajootan E, Hayati B (2015) Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 51:127–134

    Article  CAS  Google Scholar 

  • Martins PD, Danczak RE, Roux S, Frank J, Borton MA, Wolfe RA, Burris MN, Wilkins MJ (2018) Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome 6:138

    Article  Google Scholar 

  • Matilla MA, Pizarro-Tobias P, Roca A, Fernández M, Duque E, Molina L, Wu X, van der Lelie D, Gómez MJ, Segura A (2011) Complete genome of the plant growth-promoting rhizobacterium Pseudomonas putida BIRD-1. J Bacteriol 193:1290–1290

    Article  CAS  Google Scholar 

  • Mirza BS, Muruganandam S, Meng X, Sorensen DL, Dupont RR, McLean JE (2014) Arsenic (V) reduction in relation to iron (III) transformation and molecular characterization of the structural and functional microbial community in sediments of a basin-fill aquifer in Northern Utah. Appl Environ Microbiol 80:3198–3208

    Article  CAS  Google Scholar 

  • Mirza BS, Sorensen DL, Dupont RR, McLean JE (2016) New arsenate reductase gene (arrA) PCR primers for diversity assessment and quantification in environmental samples. Appl Environ Microbiol 83:e02725–16

    Google Scholar 

  • Mumford AC, Barringer JL, Benzel WM, Reilly PA, Young L (2012) Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Water Res 46:2859–2868

    Article  CAS  Google Scholar 

  • Neidhardt H, Norra S, Tang X, Guo H, Stuben D (2012) Impact of irrigation with high arsenic burdened groundwater on the soil-plant system: Results from a case study in the Inner Mongolia, China. Environ Pollut 163:8–13

    Article  CAS  Google Scholar 

  • Niggemyer A, Spring S, Stackebrandt E, Rosenzweig RF (2001) Isolation and characterization of a novel As (V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67:5568–5580

    Article  CAS  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    Article  CAS  Google Scholar 

  • Ohtsuka T, Yamaguchi N, Makino T, Sakurai K, Kimura K, Kudo K, Homma E, Dong DT, Amachi S (2013) Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Environ Sci Technol 47:6263–6271

    Article  CAS  Google Scholar 

  • Páez‐Espino AD, Durante‐Rodríguez G, de Lorenzo V (2015) Functional coexistence of twin arsenic resistance systems in Pseudomonas putida KT 2440. Environ Microbiol 17:229–238

    Article  CAS  Google Scholar 

  • Qiao JT, Li XM, Hu M, Li FB, Young LY, Sun WM, Huang W, Cui JH (2017) Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil. Environ Sci Technol 52:61–70

    Article  CAS  Google Scholar 

  • Rowland H, Pederick R, Polya D, Pancost R, Van Dongen B, Gault A, Vaughan D, Bryant C, Anderson B, Lloyd J (2007) The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 5:281–292

    Article  CAS  Google Scholar 

  • Saleh MA, Ekram AE (2013) Arsenate reduction by some bacteria isolated from industrial effluents of rajshahi, Bangladesh. Int J Appl Nat Sci 2:23–30

    Google Scholar 

  • Saltikov CW, Wildman RA, Newman DK (2005) Expression dynamics of arsenic respiration and detoxification in Shewanella sp. strain ANA-3. J Bacteriology 187:7390–7396

    Article  CAS  Google Scholar 

  • Shakoori FR, Aziz I, Rehman A, Shakoori A (2010) Isolation and characterization of arsenic reducing bacteria from industrial effluents and their potential use in bioremediation of wastewater. Pak J Zool 42:331–338

    CAS  Google Scholar 

  • Sharrar AM, Flood BE, Bailey JV, Jones DS, Biddanda BA, Ruberg SA, Marcus DN, Dick GJ (2017) Novel large sulfur bacteria in the metagenomes of groundwater-fed chemosynthetic microbial mats in the Lake Huron basin. Front Microbiol 8:791

    Article  Google Scholar 

  • Shi L, Richardson DJ, Wang Z, Kerisit SN, Rosso KM, Zachara JM, Fredrickson JK (2009) The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep 1:220–227

    Article  CAS  Google Scholar 

  • Song B, Chyun E, Jaffé PR, Ward BB (2009) Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments. FEMS Microbiol Ecol 68:108–117

    Article  CAS  Google Scholar 

  • Sun Y, Polishchuk EA, Radoja U, Cullen WR (2004) Identification and quantification of arsC genes in environmental samples by using real-time PCR. J Microbiol Methods 58:335–349

    Article  CAS  Google Scholar 

  • Tsai S, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667

    Article  CAS  Google Scholar 

  • Upadhyaya G, Clancy TM, Brown J, Hayes KF, Raskin L (2012) Optimization of arsenic removal water treatment system through characterization of terminal electron accepting processes. Environ Sci Technol 46:11702–11709

    Article  CAS  Google Scholar 

  • Wang J, Zeng X, Zhu X, Chen X, Zeng X, Mu Y, Yang Y, Wang Y (2017) Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater. J Hazard Mater 339:409–417

    Article  CAS  Google Scholar 

  • Wang L, Zhuang X, Zhuang G, Jing C (2016) Arsenic resistance strategy in Pantoea sp. IMH: organization, function and evolution of ars genes. Sci Rep 6:39195

    Article  CAS  Google Scholar 

  • Wang Y, Li P, Dai X, Zhang R, Jiang Z, Jiang D, Wang Y (2015) Abundance and diversity of methanogens: Potential role in high arsenic groundwater in Hetao Plain of Inner Mongolia, China. Sci Total Environ 515:153–161

    Article  CAS  Google Scholar 

  • Wang Y, Li P, Jiang Z, Liu H, Wei D, Wang H, Wang Y (2018) Diversity and abundance of arsenic methylating microorganisms in high arsenic groundwater from Hetao Plain of Inner Mongolia, China. Ecotoxicology 27:1047–1057

    Article  CAS  Google Scholar 

  • Wang Y, Li P, Jiang Z, Sinkkonen A, Wang S, Tu J, Wei D, Dong H, Wang Y (2016) Microbial community of high arsenic groundwater in agricultural irrigation area of Hetao Plain, Inner Mongolia. Front Microbiol 7:1917

    Google Scholar 

  • Watanabe T, Kojima H, Fukui M (2014) Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst Appl Microbiol 37:387–395

    Article  CAS  Google Scholar 

  • Weeger W, Lievremont D, Perret M, Lagarde F, Hubert J-C, Leroy M, Lett M-C (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149

    Article  CAS  Google Scholar 

  • Winkel LH, Trang PTK, Lan VM, Stengel C, Amini M, Ha NT, Viet PH, Berg M (2011) Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc Natl Acad Sci 108:1246–1251

    Article  CAS  Google Scholar 

  • Yang G, Yin Y, Wang J (2019) Microbial community diversity during fermentative hydrogen production inoculating various pretreated cultures. Int J Hydrogen Energy 44:13147–13156

    Article  CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecology 82:18–25

    Article  Google Scholar 

  • Zhang SY, Zhao FJ, Sun GX, Su JQ, Yang XR, Li H, Zhu YG (2015) Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environ Sci Technol 49:4138–4146

    Article  CAS  Google Scholar 

  • Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Methods 55(1):155–164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by National Natural Science Foundation of China (Grant Nos. 91851115, 41702365 and 41702260).

Funding

This study was funded by National Natural Science Foundation of China (grant numbers 91851115, 41702365, and 41702260)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wei, D., Li, P. et al. Diversity and arsenic-metabolizing gene clusters of indigenous arsenate-reducing bacteria in high arsenic groundwater of the Hetao Plain, Inner Mongolia. Ecotoxicology 30, 1680–1688 (2021). https://doi.org/10.1007/s10646-020-02305-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02305-1

Keywords

Navigation