Skip to main content
Log in

Effects of Cd, Zn or Pb stress in Populus alba berolinensis on the development and reproduction of Lymantria dispar

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In order to investigate the effects of heavy metal stress on woody plant defense against phytophagous insects, we studied development and reproduction traits of the gypsy moth, Lymantria dispar that were separately fed with leaves plucked from poplar seedlings (Populus alba berolinensis) grown in either non-contaminated soil (control), Cd-contaminated soil (1.5 mg/kg), Zn-contaminated soil (500 mg/kg) or Pb-contaminated soil (500 mg/kg). The results showed that feeding on Cd or Pb stressed poplar leaves significantly decreased L. dispar larval weights, body lengths and head capsule widths, pupal weights and female fecundity, and delayed the duration of larval development. Similar effects from the Zn stressed poplar leaves were also observed on all the above mentioned variables except male pupal weight and larval development duration that showed no differences from the control. Cd, Zn, or Pb stressed poplar leaves had no significant effects on L. dispar larval survival, pupation and emergence rates; in fact, both larval survival and pupation rates reached 100%. These results suggest that Cd, Zn or Pb stress in P. alba berolinensis might help the trees defend against the defoliator, however; L. dispar may in turn have an effective detoxification mechanism for lessening the effects of plant-mediated defenses and heavy metals in leaves on larval survival, pupation and eclosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad A, Hadi F, Ali N et al (2016) Enhanced phytoremediation of cadmium polluted water through two aquatic plants Veronica anagallis-aquatica, and Epilobium laxum. Environ Sci Pollut Res Int 23:17715

    Article  CAS  Google Scholar 

  • Ali N, Hadi F (2015) Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. Environ Sci Pollut Res 22:13305–13318

    Article  CAS  Google Scholar 

  • Asgher M, Khan MI, Anjum NA et al (2015) Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  Google Scholar 

  • Augustyniak M, Migula P (2000) Chapter 16 Body burden with metals and detoxifying abilities of the grasshopper-Chorthippus brunneus, (Thunberg) from industrially polluted areas. Trace Metals Environ 4:423–454

    Article  Google Scholar 

  • Baghban A, Sendi JJ, Zibaee A et al (2014) Effect of heavy metals (Cd, Cu, and Zn) on feedingindices and energy reserves of the cotton boll worm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). J Plant Protect Res 54:365–373

    Article  Google Scholar 

  • Borowska J, Pyza E (2011) Effects of heavy metals on insect immunocompetent cells. J Insect Physiol 57:760–770

    Article  CAS  Google Scholar 

  • Borowska J, Sulima B, Niklinska M et al (2004) Heavy metal accumulation and its effects on development, survival and immuno-competent cells of the housefly Musca domestica from closed laboratory populations as model organism. Fresen Environ Bull 13:1402–1409

    CAS  Google Scholar 

  • Boyd RS (2012) Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci 195:88–95

    Article  CAS  Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    Article  CAS  Google Scholar 

  • Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176

    Article  CAS  Google Scholar 

  • Cabot C, Gallego B, Martos S et al (2013) Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta 237:337–349

    Article  CAS  Google Scholar 

  • Cervera A, Maymó AC, Sendra M et al (2004) Cadmium effects on development and reproduction of Oncopeltus fasciatus (Heteroptera: Lygaeidae). J Insect Physiol 50:737–749

    Article  CAS  Google Scholar 

  • Cheruiyot DJ, Boyd RS, Moar W (2015) Testing the joint effects hypothesis of elemental defense using Spodoptera Exigua. J Chem Ecol 41:168–177

    Article  CAS  Google Scholar 

  • Cuny D, Haluwyn CV, Shirali P et al (2004) Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum, (Scop.) R. Sant. – identification of oxidative stress biomarkers. Water Air Soil Pollut 152:55–69

    Article  CAS  Google Scholar 

  • Davis MA, Boyd RS (2000) Dynamics of Ni-based defence and organic defences in the Ni hyperaccumulator, Streptanthus polygaloides (Brassicaceae). New Phytol 146:211–217

    Article  CAS  Google Scholar 

  • DeMoor JM, Koropatnick DJ (2000) Metals and cellular signaling in mammalian cells. Cell Mol Biol 46:367–381

    CAS  Google Scholar 

  • Deng X, Pettigrove V, Yang XN et al (2014) Evaluation of heavy metal toxicity in sediments using the midge Chironomus tepperi. Chinese J Ecol 33:680–686. in Chinese

    Google Scholar 

  • Domínguez-Crespo MA, Sánchez-Hernández ZE, Torres-Huerta AM et al (2012) Effect of the heavy metals Cu, Ni, Cd and Zn on the growth and reproduction of Epigeic Earthworms (E. fetida) during the vermistabilization of municipal sewage sludge. Water Air Soil Pollut 223:915–931

    Article  Google Scholar 

  • Filipiak M, Bilska E, Tylko G et al (2010) Effects of zinc on programmed cell death of Musca domestica and Drosophila melanogaster blood cells. J Insect Physiol 56:383–390

    Article  CAS  Google Scholar 

  • Galal TM, Shehata HS (2015) Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Indic 48:244–251

    Article  CAS  Google Scholar 

  • Gintenreiter S, Ortel J, Nopp HJ (1993) Effects of different dietary levels of cadmium, lead, copper, and zinc on the vitality of the forest pest insect Lymantria dispar L.(Lymantriidae, Lepid). Arch Environ Contam Toxicol 25:62–66

    CAS  Google Scholar 

  • Grinberg-Yaari M, Alagarmalai J, Lewinsohn E et al (2015) Role of jasmonic acid signaling in tomato defense against broad mite, Polyphagotarsonemus latus (Acari: Tarsonemidae). Arthropod-Plant Interact 9:361–372

    Article  Google Scholar 

  • Gupta N, Ram H, Kumar B (2016) Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Rev Environ Sci Bio/Technol 15:89–109

    Article  CAS  Google Scholar 

  • Haudecoeur E, Planamente S, Cirou A et al (2009) Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 106:14587–92

    Article  CAS  Google Scholar 

  • Hogervorst PAM, Wäckers FL, Romeis J (2007) [Effects of honeydew sugar composition on the longevity of Aphidius ervi]. Entomologia Experimentalis et Applicata 122:223–232

    Article  CAS  Google Scholar 

  • Hruska KA, Dubé MG (2004) Using artificial streams to assess the effects of metal‐mining effluent on the life cycle of the freshwater midge (Chironomus tentans) in situ. Environ Toxicol Chem 23:2709–2718

    Article  CAS  Google Scholar 

  • Huitson SB, Macnair MR (2003) Does zinc protect the zinc hyperaccumulator Arabidopsis halleri from herbivory by snails? New Phytol 159:453–459

    Article  CAS  Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD et al (2006) Nickel hyperaccumulation by Streptanthus polygaloides protects against the folivore Plutella xylostella (Lepidoptera: Plutellidae). Plant Ecol 183:91–104

    Article  Google Scholar 

  • Jhee EM, Dandridge KL, Christy Jr AM et al (1999) Selective herbivory on low-zinc phenotypes of the hyperaccumulator Thlaspi caerulescens (Brassicaceae)[J]. Chemoecology 9:93–95

    Article  CAS  Google Scholar 

  • Jiang RF, Ma DY, Zhao FJ et al (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167:805–14

    Article  CAS  Google Scholar 

  • Kafel A, Zawisza-Raszka A, Szulińska E (2012) Effects of multigenerational cadmium exposure of insects (Spodoptera exigua, larvae) on anti-oxidant response in haemolymph and developmental parameters. Environ Pollut 162:8

    Article  CAS  Google Scholar 

  • Kautz S, Trisel JA, Ballhorn DJ (2014) Jasmonic acid enhances plant cyanogenesis and resistance to herbivory in lima bean. J Chem Ecol 40:1186–1196

    Article  CAS  Google Scholar 

  • Kazemi-Dinan A, Sauer J, Stein RJ et al (2015) Is there a trade-off between glucosinolate-based organic and inorganic defences in a metal hyperaccumulator in the field? Oecologia 178:369–378

    Article  Google Scholar 

  • Kazemi-Dinan A, Thomaschky S, Stein RJ et al (2014) Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore. New Phytol 202:628–639

    Article  CAS  Google Scholar 

  • Khan A, Khan S, Khan MA et al (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22:13772–13799

    Article  CAS  Google Scholar 

  • Konopka JK, Hanyu K, Macfie SM et al (2013) Does the response of insect herbivores to cadmium depend on their feeding strategy? J Chem Ecol 39:546–554

    Article  CAS  Google Scholar 

  • Kováčik J, Klejdus B (2008) Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep 27:605–615

    Article  Google Scholar 

  • Ku KM, Juvik JA (2013) Environmental stress and methyl jasmonate-mediated changes in flavonoid concentrations and antioxidant activity in broccoli florets and kale leaf tissues. HortScience 48:996–1002

    CAS  Google Scholar 

  • Kusznierewicz B, Bączek-Kwinta R, Bartoszek A et al (2012) The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba). Environ Toxicol Chem 31:2482–2489

    Article  CAS  Google Scholar 

  • Lavid N, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212:323–331

    Article  CAS  Google Scholar 

  • Llugany M, Martin SR, Barceló J et al (2013) Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress. Plant Cell Rep 32:1243–1249

    Article  CAS  Google Scholar 

  • Lapointe SL, Weathersbee III AA, Doostdar H et al (2004) Effect of dietary copper on larval development of Diaprepes abbreviatus (Coleoptera: Curculionidae). Florida Entomol 87:25–29

    Article  CAS  Google Scholar 

  • Martens SN, Boyd RS (2002) The defensive role of Ni hyperaccumulation by plants: a field experiment. Am J Bot 89:998–1003

    Article  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Studies 15:523–530

    CAS  Google Scholar 

  • Nieminen M, Nuorteva P, Tulisalo E (2001) The effect of metals on the mortality of Parnassius apollo larvae (Lepidoptera: Papilionidae). J Insect Conserv 5:1–7

    Article  Google Scholar 

  • Noret N, Meerts P, Vanhaelen M et al (2007) Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia 152:92–100

    Article  Google Scholar 

  • Osman W, El-Samad LM, Mokhamer ELH et al (2015) Ecological, morphological, and histological studies on Blaps polycresta (Coleoptera: Tenebrionidae) as biomonitors of cadmium soil pollution. Environ Sci Pollut Res 22:14104–14115

    Article  CAS  Google Scholar 

  • Perfusbarbeoch L, Leonhardt N, Vavasseur A et al (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  Google Scholar 

  • Posthuma L, Hogervorst RF, Straalen NMV (1992) Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta, (L.) (Collembola). Archives Environ Contam Toxicol 22:146

    Article  CAS  Google Scholar 

  • Postma JF, Davids C (1995) Tolerance induction and life cycle changes in cadmium-exposed Chironomus riparius (Diptera) during consecutive generations. Ecotoxicol Environ Saf 30:195–202

    Article  CAS  Google Scholar 

  • Qiu Q, Wang Y, Yang Z et al (2011) Responses of different chinese flowering cabbage (Brassica parachinensis L.) cultivars to cadmium and lead stress: screening for Cd + Pb pollution-safe cultivars. CLEAN-Soil Air Water 39:925–932

    Article  CAS  Google Scholar 

  • Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J et al (2014) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103:250–260

    Article  Google Scholar 

  • Rachinsky A, Strambi C, Strambi A et al (1990) Caste and metamorphosis: hemolymph titers of juvenile hormone and ecdysteroids in last instar honeybee larvae. Gen Comp Endocrinol 79:31–38

    Article  CAS  Google Scholar 

  • Rao GMV, Ramani S, Singh SP (2003) Fecundity of Chilo partellus (Swinhoe) in relation to pupal weight. Annals of plant protection. Sciences 11:220–223

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci Int J Exp Plant Biol 180:169–181

    CAS  Google Scholar 

  • Rink L, Gabriel P (2000) Zinc and the immune system. Proc Nutr Soc 59:541–552

    Article  CAS  Google Scholar 

  • Rodrigues S, Henriques B, Reis A et al (2012) Hg transfer from contaminated soils to plants and animals. Environ Chem Lett 10:61–67

    Article  CAS  Google Scholar 

  • Rodríguezserrano M, Romeropuertas MC, Pazmiño DM et al (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229

    Article  Google Scholar 

  • Ryan RO, van der Horst DJ (2000) Lipid transport biochemistry and its role in energy production. Annu Rev Entomol 45(1):233–260

    Article  CAS  Google Scholar 

  • Sahu S, Dandapat J, Mohanty N (2015) Foliar supplementation of zinc modulates growth and antioxidant defense system of tasar silkworm Antheraea mylitta. J Entomol Zool Study 3:25–35

    Google Scholar 

  • Sakihama Y, Yamasaki H (2002) Lipid peroxidation induced by phenolics in conjunction with aluminum ions. Biologia Plantarum 45:249–254

    Article  CAS  Google Scholar 

  • Sgherri C, Cosi E, Navari-Izzo F (2003) Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant 118:21–28

    Article  CAS  Google Scholar 

  • Shu Y, Zhou J, Lu K et al (2015) Response of the common cutworm Spodoptera litura to lead stress: changes in sex ratio, Pb accumulations, midgut cell ultrastructure. Chemosphere 139:441

    Article  CAS  Google Scholar 

  • Sorvari J, Rantala LM, Rantala MJ et al (2007) Heavy metal pollution disturbs immune response in wild ant populations. Environ Pollut 145:324–328

    Article  CAS  Google Scholar 

  • Tanaskovic M, Novicic ZK, Kenig B et al (2015) Effect of lead pollution on fitness and its dependence on heterozygosity in Drosophila subobscura. J Genet 94:643–649

    Article  CAS  Google Scholar 

  • Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411

    Article  CAS  Google Scholar 

  • Van OT, Pausio SRantala MJ, (2008) Direct effects of heavy metal pollution on the immune function of a geometrid moth, Epirrita autumnata. Chemosphere 71:1840–1844

  • Van OT, Rantala MJ, Saloniemi I (2007) Diet-mediated effects of heavy metal pollution on growth and immune response in the geometrid moth Epirrita autumnata. Environ Pollut 145:348

    Article  Google Scholar 

  • Waisberg M, Joseph P, Hale B et al (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  CAS  Google Scholar 

  • Wang C, Lu J, Zhang S et al (2011) Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicol Environ Saf 74:1297–1303

    Article  CAS  Google Scholar 

  • Wang QR, Dong Y, Cui Y, Liu X (2001) Instances of soil and crop heavy metal contamination in China. Soil Sediment Contam Int J 10:497–510

    Article  Google Scholar 

  • Yuan H, Qin F, Guo W et al (2016) Oxidative stress and spermatogenesis suppression in the testis of cadmium-treated Bombyx mori larvae. Environ Sci Pollut Res 23:5763–5770

    Article  CAS  Google Scholar 

  • Zhang YP, Song DN, Wu HH et al (2014) Effect of dietary cadmium on the activity of glutathione S-transferase and carboxylesterase in different developmental stages of the Oxya chinensis (Orthoptera: Acridoidea). Environ Entomol 43:171–177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities (2572017AA24); and Special Fund for scientific Research in the Public Interest (200904021). We are very grateful to Dr. John A. Byers from the Hebrew University of Jerusalem, Israel for English editing and valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanchun Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Yan, S. Effects of Cd, Zn or Pb stress in Populus alba berolinensis on the development and reproduction of Lymantria dispar . Ecotoxicology 26, 1305–1313 (2017). https://doi.org/10.1007/s10646-017-1855-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-017-1855-7

Keywords

Navigation