Skip to main content
Log in

The response of marigold (Tagetes erecta Linn.) to ozone: impacts on plant growth and leaf physiology

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Progressively increasing ozone (O3) concentrations pose a potential threat to the value of marigold (Tagetes erecta Linn.), a plant widely used in urban landscaping. The response of marigold to elevated O3 has been reported earlier, but the mechanisms underlying the O3 effect have not been clearly elucidated. In the present study, we exposed marigold “Moonsong Deep Orange” plants to elevated O3, including ambient non-filtered air (NF) plus 60 ppb (NF+60) and 120 ppb (NF+120) O3, to assess visible injury and the possible physiological consequences of this pollutant. Yellow lesions appeared after 4 days under NF+120 treatment and 12 days under NF+60 treatment, with 85.6% and 36.8% of the leaves being injured at harvest time, respectively. Compared with NF, NF+60 inhibited leaf photosynthesis, stem-diameter growth, and biomass production significantly, while the parameters were decreased more by NF+120. Although the stomatal conductance decreased under elevated O3 exposure, the O3 flux into leaves increased by 28.0–104.8% under NF+60 treatment and 57.5–145.6% under NF+120 treatment. The total ascorbic acid (ASA) content increased due to elevated O3 exposure, while the reduced ASA content did not, resulting in a decreased ratio of reduced to total ASA. A lower level of jasmonic acid (JA) was observed under elevated O3 exposure. In conclusion, the impacts of elevated O3 on marigold plants may be ascribed to increased O3 flux into leaves and reduced protective capacity of leaves to convert oxidized to reduced ASA and synthesize endogenous JA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  • Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959

    Article  CAS  Google Scholar 

  • Ainsworth E, Yendrek C, Sitch S, Collins W, Emberson L (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  Google Scholar 

  • Ashmore M (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Baier M, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone: Perception, signalling and response. Plant Cell Environ 28:1012–1020

    Article  CAS  Google Scholar 

  • Bao X, Li Q, Hua J, Zhao T, Liang W (2014) Interactive effects of elevated ozone and UV-B radiation on soil nematode diversity. Ecotoxicology 23:11–20

    Article  CAS  Google Scholar 

  • Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot 94:73–88

    Article  CAS  Google Scholar 

  • Beardmore T, Wetzel S, Kalous M (2000) Interactions of airborne methyl jasmonate with vegetative storage protein gene and protein accumulation and biomass partitioning in Populus plants. Can J Forest Res 30:1106–1113

    Article  CAS  Google Scholar 

  • Booker FL, Burkey KO, Jones AM (2012) Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L. Plant Cell Environ 35:1456–1466

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Broadmeadow M (1998) Ozone and forest trees. New Phytol 139:123–125

    Article  CAS  Google Scholar 

  • Burkey KO, Neufeld HS, Souza L, Chappelka AH, Davison AW (2006) Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers. Environ Pollut 143:427–434. doi:10.1016/j.envpol.2005.12.009

    Article  CAS  Google Scholar 

  • Carriero G, Emiliani G, Giovannelli A, Hoshika Y, Manning WJ, Traversi ML, Paoletti E (2015) Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU). Environ Pollut 206:575–581

    Article  CAS  Google Scholar 

  • Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment. Environ Pollut 157:1461–1469

    Article  CAS  Google Scholar 

  • Chaparzadeh N, D'Amico ML, Khavari-Nejad R-A, Izzo R,Navari-Izzo F (2004) Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiol Bioch 42:695–701. doi:10.1016/j.plaphy.2004.07.001

    Article  CAS  Google Scholar 

  • Chen W, Tang H, Zhao H (2015) Durnal, weekly and monthly spatial variations of air pollutants and air quality of Beijing. Atmons Environ 119:21–34

    Article  CAS  Google Scholar 

  • Cho K et al. (2011) Tropospheric ozone and plants: absorption, responses, and consequences. In: Whitacre DM (ed) Reviews of Environmental Contamination and Toxicology, Volume 212. Springer, USA, pp 61–111

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970. doi:10.1111/j.1365-3040.2004.01203.x

    Article  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Biol 48:355–381

    Article  CAS  Google Scholar 

  • Danielsson H, Karlsson PE, Pleijel H (2013) An ozone response relationship for four Phleum pratense genotypes based on modelling of the phytotoxic ozone dose (POD). Environ Exp Bot 90:70–77

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Saha P, Jain R, Malhotra S, Mohamed Saleh MAA (2012) Antibacterial activity of leaf extract of Mexican marigold (Tagetes erecta) against different Gram positive and Gram negative bacterial strains. J Pharm Res 5:4201–4203

    Google Scholar 

  • Dubouzet JG, Strabala TJ, Wagner A (2013) Potential transgenic routes to increase tree biomass. Plant Sci 212:72–101. doi:10.1016/j.plantsci.2013.08.006

    Article  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    Article  CAS  Google Scholar 

  • Evans PA, Ashmore MR (1992) The effects of ambient air on a semi-natural grassland community. Agric Ecosyst Environ 38:91–97. doi:10.1016/0167-8809(92)90170-G

    Article  CAS  Google Scholar 

  • Fares S, Savi F, Muller J, Matteucci G, Paoletti E (2014) Simultaneous measurements of above and below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a Mediterranean Oak Forest. Agr Forest Meteorol 198:181–191

    Article  Google Scholar 

  • Feng Z, Niu J, Zhang W, Wang X, Yao F, Tian Y (2011a) Effects of ozone exposure on sub-tropical evergreen Cinnamomum camphora seedlings grown in different nitrogen loads. Trees 25:617–625

    Article  CAS  Google Scholar 

  • Feng Z, Pang J, Kobayashi K, Zhu J, Ort DR (2011b) Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Global Change Biol 17:580–591. doi:10.1111/j.1365-2486.2010.02184.x

    Article  Google Scholar 

  • Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS 106(25):10343–10347

    Article  CAS  Google Scholar 

  • Frey B, Scheidegger C, Günthardt-Goerg MS, Matyssek R (1996) The effects of ozone and nutrient supply on stomatal response in birch (Betula pendula) leaves as determined by digital image-analysis and X-ray microanalysis. New Phytol 132:135–143

    Article  CAS  Google Scholar 

  • Furlan CM, Moraes RM, Bulbovas P, Domingos M, Salatino A, Sanz MJ (2007) Psidium guajava ‘Paluma’ (the guava plant) as a new bio-indicator of ozone in the tropics. Environ Pollut 147:691–695. doi:10.1016/j.envpol.2006.09.014

    Article  CAS  Google Scholar 

  • Gillespie KM, Ainsworth EA (2007) Measurement of reduced, oxidized and total ascorbate content in plants. Nat Protoc 2:871–874

    Article  CAS  Google Scholar 

  • Gonzalez-Fernandez I, Kaminska A, Dodmani M, Goumenaki E, Quarrie S, Barnes JD (2010) Establishing ozone flux eresponse relationships for winter wheat: analysis of uncertainties based on data for UK and Polish genotypes. Atmos Environ 44:6217630

    Google Scholar 

  • Grantz D, Vu H-B, Heath R, Burkey K (2013) Demonstration of a diel trend in sensitivity of Gossypium to ozone: a step toward relating O3 injury to exposure or flux. J Exp Bot 64:1703–1713

    Article  CAS  Google Scholar 

  • Hassan IA, Ashmore MR, Bell JNB (1994) Effects of O3 on the stomatal behaviour of Egyptian varieties of radish (Raphanus sativus L. cv. Baladey) and turnip (Brassica rapa L. cv. Sultani). New Phytol 128:243–249

    Article  CAS  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000a) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267. doi:10.1016/S1360-1385(00)01649-6

    Article  CAS  Google Scholar 

  • Horemans N, Foyer CH, Potters G, Asard H (2000b) Ascorbate function and associated transport system in plants. Plant Physiol Biochem 38:531–540

    Article  CAS  Google Scholar 

  • Hoshika Y, Carriero G, Feng Z, Zhang Y, Paoletti E (2014) Determinants of stomatal sluggishness in ozone-exposed deciduous tree species. Sci Total Environ 481:453–458. doi:10.1016/j.scitotenv.2014.02.080

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Kitao M, Häberle K-H, Grams TEE, Koike T, Matyssek R (2015) Ozone induces stomatal narrowing in European and Siebold’s beeches: A comparison between two experiments of free-air ozone exposure. Environ Pollut 196:527–533. doi:10.1016/j.envpol.2014.07.034

    Article  CAS  Google Scholar 

  • Hu E, Gao F, Xin Y, Jia H, Li K, Hu J, Feng Z (2015) Concentration-and flux-based ozone dose–response relationships for five poplar clones grown in North China. Environ Pollut 207:21–30

    Article  CAS  Google Scholar 

  • Hussain MA, Mukhtar T, Kayani MZ (2011) Efficacy evaluation of Azadirachta indica, Calotropis procera, Datura stramonium and Tagetes erecta against root-knot nematodes Meloidogyne incognita. Pak J Bot 43:197–204

    Google Scholar 

  • ICPP IPoCC (2013) Fifth assessment report, http://www.icpp.ch/report/ar5/index.shtml

  • Joo JH, Bae YS, Lee JS (2001) Role of Auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126(3):1055–1060

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Moon J-C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5(6): 709–725

  • Kiranmai M, Kazim SM, Ibrahim M (2011) Combined wound healing activity of Gymnema sylvestre and Tagetes erecta linn. Int J Pharm Appl 2:135–140

    Google Scholar 

  • Koch JR, Creelman RA, Eshita SM, Seskar M, Mullet JE, Davis KR (2000) Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Phys 123:487–496. doi:10.1104/pp.123.2.487

    Article  CAS  Google Scholar 

  • Lawson T (2009) Guard cell photosynthesis and stomatal function. New Phytol 181:13–34

    Article  CAS  Google Scholar 

  • Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550

    Article  CAS  Google Scholar 

  • Luwe MW, Takahama U, Heber U (1993) Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant Physiol 101:969–976

    Article  CAS  Google Scholar 

  • Maity N, Nema NK, Abedy MK, Sarkar BK, Mukherjee PK (2011) Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. J Ethnopharmacol 137:1300–1305

    Article  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plantarum 133:481–489

    Article  CAS  Google Scholar 

  • Mills G, Hayes F, Wilkinson S, Davies WJ (2009) Chronic exposure to increasing background ozone impairs stomatal functioning in grassland species. Global Change Biol 15:1522–1533

    Article  Google Scholar 

  • Monda K, Araki H, Kuhara S, Ishigaki G, Akashi R, Negi J, Kojima M, Sakakibara H, Takahashi S, Hashimoto-Sugimoto M (2016) Enhanced stomatal conductance by a spontaneous Arabidopsis Tetraploid, Me-0, results from increased stomatal size and greater stomatal aperture. Plant Physiol 170:1435–1444

    CAS  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Musselman RC, Lefohn AS, Massman WJ, Heath RL (2006) A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ 40(10):1869–1888

    Article  CAS  Google Scholar 

  • Musselman RC, Minnick TJ (2000) Nocturnal stomatal conductance and ambient air quality standards for ozone. Atmos Environ 34:719–733. doi:10.1016/S1352-2310(99)00355-6

    Article  CAS  Google Scholar 

  • Musselman RC, Oshima RJ, Gallavan RE (1983) Significance of pollutant concentration distribution in the response of “red kidney” beans to ozone. J Am Soc Hortic Sci 108(2):347–351

    CAS  Google Scholar 

  • Nikkon F, Habib MR, Saud ZA, Karim MR (2011) Tagetes erecta Linn. and its mosquitocidal potency against Culex quinquefasciatus. Asian Pac J Trop Biomed 1:186–188

    Article  Google Scholar 

  • Noormets A, Sober A, Pell E, Dickson R, Podila G, Sober J, Isebrands J, Karnosky D (2001) Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. Plant Cell Environ 24:327–336

    Article  CAS  Google Scholar 

  • Okello BD, O’Connor TG, Young TP (2001) Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya. Forest Ecol Manag 142:143–153. doi:10.1016/S0378-1127(00)00346-7

    Article  Google Scholar 

  • Oksanen E, Häikiö E, Sober J, Karnosky D (2004) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161:791–799

    Article  CAS  Google Scholar 

  • Pääkkönen E, Metsärinne S, Holopainen T, Kärenlampi L (1996) The ozone sensitivity of birch (Betula pendula) in relation to the developmental stage of leaves. New Phytol 132:145–154

    Article  Google Scholar 

  • Pan X, Welti R, Wang X (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc 5:986–992. doi:10.1038/nprot.2010.37

    Article  CAS  Google Scholar 

  • Pellegrini E, Trivellini A, Campanella A, Francini A, Lorenzini G, Nali C, Vernieri P (2013) Signaling molecules and cell death in Melissa officinalis plants exposed to ozone. Plant Cell Rep 32:1965–1980

    Article  CAS  Google Scholar 

  • Plöchl M, Lyons T, Ollerenshaw J, Barnes J (2000) Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210:454–467. doi:10.1007/PL00008153

    Article  Google Scholar 

  • Power S, Ashmore M (2002) Responses of fen and fen-meadow communities to ozone. New Phytol 156:399–408

    Article  CAS  Google Scholar 

  • Pretzsch H, Dieler J, Matysse R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070

    Article  CAS  Google Scholar 

  • Ranieri A, D’Urso G, Nali C, Lorenzini G, Soldatini G (1996) Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiol Plantarum 97:381–387

    Article  CAS  Google Scholar 

  • Ranieri A, Petacco F, Castagna A, Soldatini GF (2000) Redox status and peroxidase system in sunflower plants exposed to ozone. Plant Sci 159:159–167

    Article  CAS  Google Scholar 

  • Rao MV, Lee H-i, Creelman RA, Mullet JE, Davis KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633–1646

    Article  CAS  Google Scholar 

  • Reinert RA, Sanders JS (1982) Growth of radish and marigold following repeated exposure to nitrogen dioxide, sulfur dioxide, and ozone. Plant Dis 66(2):122–124

    Article  CAS  Google Scholar 

  • Ren Q, Sun Y, Guo H, Wang C, Li C, Ge F (2015) Elevated ozone induces jasmonic acid defense of tomato plants and reduces midgut proteinase activity in Helicoverpa armigera. Entomol Exp Appl 154:188–198

    Article  CAS  Google Scholar 

  • Sanders JS, Reinert RA (1982) Weight changes to radish and marigold exposed at three ages to NO2, SO2 and O3 alone and in mixture. J Am Soc Hortic Sci 107(4):726–730

    CAS  Google Scholar 

  • Sawada H, Komatsu S, Nanjo Y, Khan NA, Kohno Y (2012) Proteomic analysis of rice response involved in reduction of grain yield under elevated ozone stress. Environ Exp Bot 77:108–116. doi:10.1016/j.envexpbot.2011.11.009

    Article  CAS  Google Scholar 

  • Singh AA, Agrawal S, Shahi J, Agrawal M (2014) Investigating the response of tropical maize (Zea mays L.) cultivars against elevated levels of O3 at two developmental stages. Ecotoxicology 23:1447–1463

    Article  CAS  Google Scholar 

  • Staswick PE, Huang J-F, Rhee Y (1991) Nitrogen and methyl jasmonate induction of soybean vegetative storage protein genes. Plant Physiol 96:130–136

    Article  CAS  Google Scholar 

  • Sun J, Feng Z, Ort DR (2014) Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean. Plant Sci 226:147–161

    Article  CAS  Google Scholar 

  • Urbach W, Schmidt W, Kolbowski J, Rümmele S, Reisberg E, Steigner W, Schreiber U (1989) Wirkungen von Umweltschadstoffen auf Photosynthese und Zellmembranen von Pflanzen GSF-Bericht (Germany)

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  CAS  Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442. doi:10.1016/j.atmosenv.2004.03.030

    Article  CAS  Google Scholar 

  • Watanabe M, Hoshika Y, Koike T (2014) Photosynthetic responses of Monarch birch seedlings to differing timings of free air ozone fumigation. J Plant Res 127:339–345

    Article  CAS  Google Scholar 

  • Wang P, Sun X, Chang C, Feng F, Liang D, Cheng L, Ma F (2013) Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. Journal of Pineal Res 55:424–434

    Article  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697. doi:10.1093/aob/mcm079

    Article  CAS  Google Scholar 

  • Wasternack C (2014) Action of jasmonates in plant stress responses and development-Applied aspects. Biotechnol Adv 32:31–39. doi:10.1016/j.biotechadv.2013.09.009

    Article  CAS  Google Scholar 

  • Wen Z, Wang L, Wang X, Li l, Cui J (2014) Combined effects of ozone and drought on leaf stomata of Acer truncatum (in Chinese with English abstract). Chin J Ecol 33:560–566

    Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    Article  CAS  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162

    Article  CAS  Google Scholar 

  • Yamaguchi M, Hoshino D, Inada H, Akhtar N, Sumioka C, Takeda K, Izuta T (2014) Evaluation of the effects of ozone on yield of Japanese rice (Oryza sativa L.) based on stomatal ozone uptake. Environ Pollut 184:472–480. doi:10.1016/j.envpol.2013.09.024

    Article  CAS  Google Scholar 

  • Yan J, Tsuichihara N, Etoh T, Iwai S (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30:1320–1325

    Article  CAS  Google Scholar 

  • Zhang S, Gao R (1999) Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress. Photosynthetica 37(4):559–571

    Article  CAS  Google Scholar 

  • Zhang WW, Niu JF, Wang XK, Tian Y, Yao FF, Feng ZZ (2011) Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China. Photosynthetica 49:29–36. doi:10.1007/s11099-011-0003-5

    Article  Google Scholar 

  • Zhao T, Liu B, Wang Y, Zhao Y, Liu Y, Guo W (2013) Effects of ozone stress on soybean roots endogenous hormones and reactive oxygen metabolism (in Chinese with English abstract). Agric Res Arid Areas 31:119–123

    Google Scholar 

  • Zheng F, Wang X, Lu F, Hou P, Zhang W, Duan X, Zhou X, Ai Y, Zheng H, Ouyang Z (2011a) Effects of elevated ozone concentration on methane emission from a rice paddy in Yangtze River Delta, China. Global Change Biol 17:898–910

    Article  Google Scholar 

  • Zheng Y, Li Y, Xia W, Xu H, Su B, Jiang G, Ning T (2011b) Responses of gas exchange, cellular membrane integrity, and antioxidant enzymes activities of salinity-stressed winter wheat to ozone pollution. Photosynthetica 49:389–396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 31200295). We thank Yulong Zhang from the State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, for assistance in building the infrastructure for O3 fumigation and sample collection. We also thank Xu Sun from Beijing Urban Ecosystem Research Station, Research Center for Eco-Environmental Sciences, for providing background data of ambient SO2 and NO2 concentrations.

Funding

This study was funded by the National Natural Science Foundation of China (No. 31200295)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feixiang Zheng.

Ethics declarations

Conflict of interest

Ning Yang declares that she has no conflict of interest. Xiaoke Wang declares that he has no conflict of interest. Feixiang Zheng declares that he has no conflict of interest. Yuanyuan Chen declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Wang, X., Zheng, F. et al. The response of marigold (Tagetes erecta Linn.) to ozone: impacts on plant growth and leaf physiology. Ecotoxicology 26, 151–164 (2017). https://doi.org/10.1007/s10646-016-1750-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1750-7

Keywords

Navigation