Skip to main content
Log in

Predicting copper phytotoxicity based on pore-water pCu

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The free ion activity and “biotic ligand” models predict that the free metal ion and other pore-water parameters describe terrestrial phytotoxicity. In this study, pore-water chemistry and measured Cu2+ was used to describe phytotoxicity of cucumber (Cucumis sativa L) in 10 contrasting soils at different soil Cu loadings. Both soil solution Cu (Cupw) and Cu2+ successfully described the response variable for all ten soils with R2 values of 0.73 and 0.66, respectively. Separation of soils as acid and alkaline and fitting separately showed that there was a strongly significant fit for both log Cu2+ and log Cupw in acidic soils (R2 = 0.92 and 0.86, respectively) but weakly significant fit for alkaline soils. The pCu EC50 and EC10 values in all acidic soils for cucumber were 5.83 (6.03–5.63) and 7.53 (8.27–7.00), respectively. In our dataset alkaline soils need to be treated individually. In addition, pCu could be predicted based on pH and total concentration alone. Despite only 12 weeks ‘ageing’ there was quantitative agreement between pCu model from this study and predicted pCu from Sauvé et al. This agreement from studies performed independently indicates that, at least in the case of Cu2+, the difference in an ageing period of ≥10 years appears minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antunes PMC, Berkelaar EJ, Boyle D, Hale BA, Hendershot W, Voigt A (2006) The biotic ligand model for plants and metals: technical challenges for field application. Environ Toxicol Chem 25:875–882. doi:10.1897/04-586r.1

    Article  CAS  Google Scholar 

  • Avdeef A, Zabronsky J, Stuting HH (1983) Calibration of copper ion selective electrode response to pCu 19. Anal Chem 55:298–304

    Article  CAS  Google Scholar 

  • Broos K, Warne MSJ, Heemsbergen DA, Stevens D, Barnes MB, Correll RL, McLaughlin MJ (2007) Soil factors controlling the toxicity of copper and zinc to microbial processes in Australian soils. Environ Toxicol Chem 26:583–590. doi:10.1897/06-302R.1

    Article  CAS  Google Scholar 

  • Bryan SE, Tipping E, Hamilton-Taylor J (2002) Comparison of measured and modelled copper binding by natural organic matter in freshwaters. Comp Biochem Physiol Part C 133:37–49. doi:10.1016/S1532-0456(02)00083-2

    CAS  Google Scholar 

  • Buchter B, Davidoff B, Amacher M, Hinz C, Iskandar I, Selim H (1989) Correlation of Freundlich Kd and n retention parameters with soils and elements. Soil Sci 148:370–379

    Article  CAS  Google Scholar 

  • Burton ED, Phillips IR, Hawker DW, Lamb DT (2005) Copper behaviour in a Podosol. 1. pH-dependent sorption-desorption, sorption isotherm analysis, and aqueous speciation modelling. Aust J Soil Res 43:491–501. doi:10.1071/sr04117

    Article  CAS  Google Scholar 

  • Chang AC, Granato TC, Page AL (1992) A methodology for establishing phytotoxicity criteria for chromium, copper, nickel, and zinc in agricultural land application of municipal sewage sludges. J Environ Qual 21:521–536

    Article  CAS  Google Scholar 

  • Daoust CM, Bastien C, Deschênes L (2006) Influence of soil properties and aging on the toxicity of copper on compost worm and barley. J Environ Qual 35:558–567

    Article  CAS  Google Scholar 

  • De Schamphelaere KAC, Janssen CR (2002) A biotic ligand model predicting acute copper toxicity for daphnia magna: the effects of calcium magnesium, sodium, potassium, and pH. Environ Sci Technol 36:48–54. doi:10.1021/es000253s

    Article  Google Scholar 

  • Gee GW, Bauder JW (eds) (1986) Particle-size analysis. Methods of soil analysis. Part 1. Physical and mineralogical methods. Soil Science Society of America, Madison

    Google Scholar 

  • Gillman G, Sumpter E (1986) Modification to the compulsive exchange method for measuring exchange characteristics of soils. Soil Res 24:61–66. doi:10.1071/SR9860061

    Article  CAS  Google Scholar 

  • Heemsbergen DA et al (2009) Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Sci Total Environ 407:2546–2556

    Article  CAS  Google Scholar 

  • Jackson BP, Miller WP (2000) Soil solution chemistry of a fly ash-poultry litter-, and sewage sludge-amended soil. J Environ Qual 29:430–436. doi:10.2134/jeq2000.00472425002900020009x

    Article  CAS  Google Scholar 

  • Jackson B, Miller W, Schumann A, Sumner M (1999) Trace element solubility from land application of fly ash/organic waste mixtures. J Environ Qual 28:639–647

    Article  CAS  Google Scholar 

  • Kader M, Lamb DT, Correll R, Megharaj M, Naidu R (2015) Pore-water chemistry explains zinc phytotoxicity in soil. Ecotoxicol Environ Saf 122:252–259

    Article  CAS  Google Scholar 

  • Kinraide TB, Pedler JF, Parker DR (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259:201–208

    Article  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Blamey FPC, Menzies NW (2009) Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass. Sci Total Environ 407:4616–4621. doi:10.1016/j.scitotenv.2009.04.041

    Article  CAS  Google Scholar 

  • Kopittke PM, Blamey FPC, Asher CJ, Menzies NW (2010) Trace metal phytotoxicity in solution culture: a review. J Exp Bot. doi:10.1093/jxb/erp385

    Google Scholar 

  • Kopittke PM, Kinraide TB, Wang P, Blamey FPC, Reichman SM, Menzies NW (2011) Alleviation of Cu and Pb Rhizotoxicities in Cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface. Environ Sci Technol 45:4966–4973. doi:10.1021/es1041404

    Article  CAS  Google Scholar 

  • Kumpiene J, Ore S, Lagerkvist A, Maurice C (2007) Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environ Pollut 145:365–373. doi:10.1016/j.envpol.2006.01.037

    Article  CAS  Google Scholar 

  • Lamb D, Ming H, Megharaj M, Naidu R (2009) Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. J Hazard Mater 171:1150–1158. doi:10.1016/j.jhazmat.2009.06.124

    Article  CAS  Google Scholar 

  • Lamb DT, Naidu R, Ming H, Megharaj M (2012) Copper phytotoxicity in native and agronomical plant species. Ecotoxicol Environ Saf 85:23–29. doi:10.1016/j.ecoenv.2012.08.018

    Article  CAS  Google Scholar 

  • Li B, Ma Y, Mclaughlin MJ, Kirby JK, Cozens G, Liu J (2010) Influences of soil properties and leaching on copper toxicity to barley root elongation. Environ Toxicol Chem 29:835–842

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR (2001) Test designs to assess the influence of soil characteristics on the toxicity of copper and lead to the oligochaete Enchytraeus albidus. Ecotoxicology 10:137–144

    Article  CAS  Google Scholar 

  • Ma Y, Lombi E, Oliver IW, Nolan AL, McLaughlin MJ (2006) Long-term aging of copper added to soils. Environ Sci Technol 40:6310–6317. doi:10.1021/es060306r

    Article  CAS  Google Scholar 

  • McBride MB (2001) Cupric ion activity in peat soil as a toxicity indicator for maize. J Environ Qual 30:78–84

    Article  CAS  Google Scholar 

  • McBride MB, MartÍnez CE (2000) Copper phytotoxicity in a contaminated soil: remediation tests with adsorptive materials. Environ Sci Technol 34:4386–4391

    Article  CAS  Google Scholar 

  • McBride M, Sauve S, Hendershot W (1997) Solubility control of Cu Zn, Cd and Pb in contaminated soils. Eur J Soil Sci 48:337–346

    Article  CAS  Google Scholar 

  • Michaud AM, Chappellaz C, Hinsinger P (2008) Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 310:151–165

    Article  CAS  Google Scholar 

  • Minnich MM, McBride MB, Chaney RL (1987) Copper activity in soil solution 2. Relation to copper accumulation in young snapbeans. Soil Sci Soc Am J 51:573–578

    Article  CAS  Google Scholar 

  • Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374

    CAS  Google Scholar 

  • Ponizovsky AA, Thakali S, Allen HE, Di Toro DM, Ackerman AJ (2006) Effect of soil properties on copper release in soil solutions at low moisture content. Environ Toxicol Chem 25:671–682. doi:10.1897/04-621R.1

    Article  CAS  Google Scholar 

  • Ponizovsky AA, Allen HE, Ackerman AJ (2007) Copper activity in soil solutions of calcareous soils. Environ Pollut 145:1–6

    Article  CAS  Google Scholar 

  • Rayment G, Higginson F (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne

    Google Scholar 

  • Rhoads F, Olson S, Manning A (1989) Copper toxicity in tomato plants. J Environ Qual 18:195–197

    Article  CAS  Google Scholar 

  • Rhoads F, Barnett R, Olson S (1992) Copper toxicity and phosphorus concentration in ‘Florida 502′oats proceedings (USA)

  • Rooney CP, Zhao FJ, McGrath SP (2006) Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environ Toxicol Chem 25:726–732

    Article  CAS  Google Scholar 

  • Santore RC, Di Toro DM, Paquin PR, Allen HE, Meyer JS (2001) Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20:2397–2402

    Article  CAS  Google Scholar 

  • Sauve S, Dumestre A, McBride M, Hendershot W (1998) Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environ Toxicol Chem 17:1481–1489

    Article  CAS  Google Scholar 

  • Sauvé S, Cook N, Hendershot WH, McBride MB (1996) Linking plant tissue concentrations and soil copper pools in urban contaminated soils. Environ Pollut 94:153–157

    Article  Google Scholar 

  • Sauvé S, McBride MB, Norvell WA, Hendershot WH (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter Water. Air Soil Pollut 100:133–149

    Article  Google Scholar 

  • Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131

    Article  Google Scholar 

  • Smith E, Naidu R, Alston AM (1999) Chemistry of arsenic in soils: I sorption of arsenate and arsenite by four Australian soils. J Environ Qual 28:1719–1726. doi:10.2134/jeq1999.00472425002800060005x

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  • Terzano R, Spagnuolo M, Medici L, Vekemans B, Vincze L, Janssens K, Ruggiero P (2005) Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash. Environ Sci Technol 39:6280–6287. doi:10.1021/es050079d

    Article  CAS  Google Scholar 

  • Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao F-J, McGrath SP (2006) A terrestrial biotic ligand model 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environ Sci Technol 40:7085–7093. doi:10.1021/es061171s

    Article  CAS  Google Scholar 

  • Tye A et al (2003) Predicting the activity of Cd2+ and Zn2+ in soil pore water from the radio-labile metal fraction. Geochim Cosmochim Acta 67:375–385

    Article  CAS  Google Scholar 

  • Warne MSJ et al (2008a) Models for the field-based toxicity of copper and zinc salts to wheat in 11 Australian soils and comparison to laboratory-based models. Environ Pollut 156:707–714

    Article  CAS  Google Scholar 

  • Warne MSJ et al (2008b) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792. doi:10.1897/07-294.1

    Article  Google Scholar 

  • Wijayawardena MAA, Naidu R, Megharaj M, Lamb D, Palanisami T, Kuchel T (2015) Using soil properties to predict in vivo bioavailability of lead in soils. Chemosphere 138:422–428

    Article  CAS  Google Scholar 

  • Zhang H, Zhao F-J, Sun B, Davison W, McGrath SP (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602–2607. doi:10.1021/es000268q

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr Rayhan Mahbub, Mr. Ramkrishna Nirola and Ms. Sedigheh Abbasi for their valuable assistance in soil sampling and Mr Dylan Lamb for assistance in pore-water analysis. This research was funded through Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE Pty Ltd).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dane T. Lamb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 852 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kader, M., Lamb, D.T., Wang, L. et al. Predicting copper phytotoxicity based on pore-water pCu. Ecotoxicology 25, 481–490 (2016). https://doi.org/10.1007/s10646-015-1605-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1605-7

Keywords

Navigation