Skip to main content
Log in

The solid-solution distribution of copper added to soils: influencing factors and models

  • Soils, Sec 4 • Ecotoxicology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

A series of empirical and mechanistic geochemical models were developed to describe the solid-solution partitioning of copper (Cu) in typical fresh spiked Chinese soils.

Materials and methods

The influence of soil properties on Cu partitioning was assessed in a wide range of soils using multiple regression analysis. Geochemical models (WHAM VI and Visual MINTEQ) and simulation analyses in combination with experimental data (i.e., the bulk of soil properties and Cu contents) were performed in order to provide additional insight into the mechanisms controlling the Cu partitioning. Calculation of soluble Cu contents based on the two models was then simplified and optimized by adjusting input variables, and the calibrated outputs were used to produce reasonable predictions of soluble metal concentrations.

Results and discussion

The results of the multiple regression analyses presented in this paper show strong correlations between soluble Cu concentrations and soil Cu concentrations and properties, with adjusted coefficients of determination (Radj2) ranging between 0.84 and 0.91. Soil organic carbon (OC) content was an insignificant factor in most cases, but the active fraction of dissolved organic matter was important in improving model estimates. The best fit of root mean square error (RMSE) varied between 0.42 and 0.77 for the WHAM VI model and between 0.28 and 0.57 for the Visual MINTEQ model across all pH categories.

Conclusions

The models presented in this paper are suitable for investigating and simulating Cu solid-solution partitioning in a wide range of Chinese soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arias M, Pérez-Novo C, Osorio F, López E, Soto B (2005) Adsorption and desorption of copper and zinc in the surface layer of acid soils. J Colloid Interf Sci 288(1):21–29

    Article  CAS  Google Scholar 

  • Baghernejad M, Javaheri F, Moosavi AA (2015) Adsorption isotherms of copper and zinc in clay minerals of calcareous soils and their effects on X-ray diffraction. Arch Agron Soil Sci 61(8):1061–1077

    Article  CAS  Google Scholar 

  • Bearup LA, Mikkelson KM, Wiley JF, Navarre-Sitchler AK, Maxwell RM, Sharp JO, McCray JE (2014) Metal fate and partitioning in soils under bark beetle-killed trees. Sci Total Environ 496:348–357

    Article  CAS  Google Scholar 

  • Bonten LTC, Groenenberg JE, Weng LP, van Riemsdijk WH (2008) Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma 146(1–2):303–310

    Article  CAS  Google Scholar 

  • Braz AMD, Fernandes AR, Ferreira JR, Alleoni LRF (2013) Prediction of the distribution coefficients of metals in Amazonian soils. Ecotox Environ Safe 95(1):212–220

    Article  CAS  Google Scholar 

  • Broos K, Warne MSTJ, Heemsbergen D, Stevens D, Barnes MB, Correll RL, McLaughlin MJ (2007) Soil factors controlling the toxicity of copper and zinc to microbial processes in Australian soils. Environ Toxicol Chem 26(4):583–590

    Article  CAS  Google Scholar 

  • Curtin D, Peterson ME, Anderson CR (2016) pH-dependence of organic matter solubility: base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy. Geoderma 271:161–172

    Article  CAS  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2009) Partitioning of metals (cd, co, cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications - a review. Eur J Soil Sci 60(4):590–612

    Article  CAS  Google Scholar 

  • Duplay J, Semhi K, Errais E, Imfeld G, Babcsanyi I, Perrone T (2014) Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils (Rouffach, France): the impact of cultural practices. Geoderma 230-231:318–328

    Article  CAS  Google Scholar 

  • Fest E, Temminghoff EJM, Comans RNJ, van Riemsdijk WH (2008) Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution solid to liquid ratio and pH. Geoderma 146(1–2):66–74

    Article  CAS  Google Scholar 

  • Gandois L, Probst A, Dumat C (2010) Modelling trace metal extractability and solubility in French forest soils by using soil properties. Eur J Soil Sci 61(2):271–286

    Article  CAS  Google Scholar 

  • Gustafsson JP (2001) Modeling the acid-base properties and metal complexation of humic substances with the Stockholm humic model. J Colloid Interf Sci 244(1):102–112

    Article  CAS  Google Scholar 

  • Gustafsson JP, Pechová P (2003) Modeling metal binding to soils: the role of natural organic matter. Environ Sci Technol 37(12):2767–2674

    Article  CAS  Google Scholar 

  • Gustafsson JP, Van Schaik JWJ (2003) Cation binding in a mor layer: batch experiments and modelling. Eur J Soil Sci 54(2):295–310

    Article  CAS  Google Scholar 

  • Huang JZ, Ge X, Wang D (2012) Distribution of heavy metals in the water column, suspended particulate maters and the sediment under hydrodynamic conditions using an annular flume. J Environl SCI 24:2051–2059

    Article  CAS  Google Scholar 

  • Jalali M, Moradi F (2013) Competitive sorption of cd, cu, Mn, Ni, Pb and Zn in polluted and unpolluted calcareous soils. Environ Monit Assess 185(11):8831–8846

    Article  CAS  Google Scholar 

  • Komy ZR, Shaker AM, Heggy SEM, El-Sayed MEA (2014) Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid. Chemosphere 99:117–124

    Article  CAS  Google Scholar 

  • Li B, Ma YB, McLaughlin MJ, Kirby JK, Cozens G, Liu JF (2010) Influences of soil properties and leaching on copper toxicity to barley root elongation. Environ Toxicol Chem 29(4):835–842

    Article  CAS  Google Scholar 

  • Li B, Ma YB, Yang JX (2017) Is the computed speciation of copper in a wide range of Chinese soils reliable? Chem Spec Bioavailab 29(1):205–215

    Article  CAS  Google Scholar 

  • Liu GN, Wang J, Liu X, Liu XH, Li XS, Ren YQ, Wang J, Dong LM (2018) Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions. Geoderma 312:104–113

    Article  CAS  Google Scholar 

  • Luo XS, Zhou DM, Liu XH, Wang YJ (2006) Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China. J Hazard Mater 131(1–3):19–27

    Article  CAS  Google Scholar 

  • McBride MB, Sauvé S, Hendershot W (1997) Solubility control of cu, Zn, cd and Pb in contaminated soils. Eur J Soil Sci 48(2):337–346

    Article  CAS  Google Scholar 

  • Mondaca P, Neaman A, Sauvé S, Salgado E, Bravo M (2015) Solubility, partitioning, and activity of copper-contaminated soils in a semiarid region. J Plant Nutr Soil SC 178(3):52–459

    Article  CAS  Google Scholar 

  • Nolan AL, McLaughlin MJ, Mason SD (2003) Chemical speciation of Zn, cd, cu, and Pb in pore waters of agricultural and contaminated soils using Donnan dialysis. Environ Sci Technol 37(1):90–98

    Article  CAS  Google Scholar 

  • Nóvoa-Muñoz JC, Queijeiro JMG, Blanco-Ward D, Álvarez-Olleros C, Martínez-Cortizas A, García-Rodeja E (2007) Total copper content and its distribution in acid vine yards soils developed from granitic rocks. Sci Total Environ 378:23–27

    Article  CAS  Google Scholar 

  • Oorts K, Bronckaers H, Smolders E (2006) Discrepancy of the microbial response to elevated cu between freshly spiked and long-term contaminated soils. Environ Toxicol Chem 25:845–853

    Article  CAS  Google Scholar 

  • Ponizovsky AA, Thakali S, Allen HE, Di Toro DM, Ackerman AJ, Metzler DM (2008) Nickel partitioning in acid soils at low moisture content. Geoderma 145(1–2):69–76

    Article  CAS  Google Scholar 

  • Pourret O, Lange B, Houben D, Colinet G, Shutcha M, Faucon MP (2015) Modeling of cobalt and copper speciation in metalliferous soils from Katanga (Democratic Republic of Congo). J Geochem Explor 149:87–96

    Article  CAS  Google Scholar 

  • Rooney CP, Zhao FJ, McGrath SP (2006) Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environ Toxicol Chem 25(3):726–732

    Article  CAS  Google Scholar 

  • Sauvé S, Hendershot W, Allen H (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34(7):1125–1131

    Article  CAS  Google Scholar 

  • Sauvé S, Manna S, Turmel MC, André GR, François C (2003) Solid-solution partitioning of cd, cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ Sci Technol 37(22):5191–5196

    Article  CAS  Google Scholar 

  • Shi ZQ, Di Toro DM, Allen HE, Sparks DL (2013) A general model for kinetics of heavy metal adsorption and desorption on soils. Environ Sci Technol 47(8):3761–3767

    Article  CAS  Google Scholar 

  • Sjöstedt CS, Gustafsson JP, Köhler SJ (2010) Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters. Environ Sci Technol 44(22):8587–8593

    Article  CAS  Google Scholar 

  • Spark KM, Wells JD, Johnson BB (1995) Characterizing trace metal adsorption on kaolinite. Eur J Soil Sci 46(4):633–640

    Article  CAS  Google Scholar 

  • Strawn DG, Baker LL (2008) Speciation of cu in a contaminated agricultural soil measured by XAFS, μ-XAFS, and μ-XRF. Environ Sci Technol 42(1):37–42

    Article  CAS  Google Scholar 

  • Strawn DG, Baker LL (2009) Molecular characterization of copper in soils using X-ray absorption spectroscopy. Environ Pollut 157(10):2813–2821

    Article  CAS  Google Scholar 

  • Thakali S, Allen HE, Di Toro DM, Ponizovsky AA, Rooney CP, Zhao FJ, McGrath SP (2006) A terrestrial biotic ligand model. 1. Development and application to cu and Ni toxicity to barley root elongation in soils. Environ Sci Technol 40(22):7085–7093

    Article  CAS  Google Scholar 

  • Thibault DH, Sheppard MI (1992) A disposable system for soil pore-water extraction by centrifugation. Commun Soil Sci Plan 23(13–14):1629–1641

    Article  Google Scholar 

  • Tipping E (1998) Humic ion binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquati Geochem 4(1):3–48

    Article  CAS  Google Scholar 

  • Tipping E, Lofts S, Lawlor AJ (1998) Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Sci Total Environ 210-211:63–77

    Article  CAS  Google Scholar 

  • Tipping E, Rey-castro C, Bryan SE, Hamilton-Taylor J (2002) Al (III) and Fe (III) binding by humic substances in freshwaters, and implications for tracemetal speciation. Geochim Cosmochim Ac 68(18):3211–3224

    Article  Google Scholar 

  • Tipping E, Rieuwerts J, Pan G, Ashmore MR, Lofts S, Hill MTR, Farago ME, Thornton I (2003) The solid-solution partitioning of heavy metals (cu, Zn, cd, Pb) in upland soils of England and Wales. Environ Pollut 125(2):213–225

    Article  CAS  Google Scholar 

  • Tye AM, Young S, Crout NMJ, Zhang H, Preston S, Zhao FJ, McGrath SP (2004) Speciation and solubility of cu, Ni and Pb in contaminated soils. Eur J Soil Sci 55(3):579–590

    Article  CAS  Google Scholar 

  • Wang XD, Ji DX, Chen XL, Ma YB, Yang JX, Ma JX, Li XX (2017) Extended biotic ligand model for predicting combined cu–Zn toxicity to wheat (Triticum aestivum L.): incorporating the effects of concentration ratio, major cations and pH. Environ Pollut 230:210–217

    Article  CAS  Google Scholar 

  • Wang XD, Hua L, Ma YB (2012) A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): influence of calcium, magnesium, sodium, potassium and pH. Chemosphere 89(1):89–95

    Article  CAS  Google Scholar 

  • Won-Wook C, Chen KY (1976) Associations of chlorinated hydrocarbons with fine particles and humic substances in nearshore surficial sediments. Environ Sci Technol 10:782–786

    Article  Google Scholar 

  • Wu CF, Luo YM, Zhang LM (2010) Variability of copper availability in paddy fields in relation to selected soil properties in southeast China. Geoderma 156(3–4):200–206

    Article  CAS  Google Scholar 

  • Zhang XQ, Wei DP, Li B, Ma YB, Huang ZB (2013a) The influence of soil solution properties on phytotoxicity of soil soluble copper in a wide range of soils. Geoderma 211-212:1–7

    Article  CAS  Google Scholar 

  • Zhang XQ, Wei DP, Li B, Ma YB, Huang ZB (2013b) The importance of soil solution chemistry to nickel toxicity on barley root elongation. Chem Spec Bioavailab 25(3):153–164

    Article  CAS  Google Scholar 

  • Zhang XY, Lin FF, Jiang YG, Feng XL (2009) Variability of total and available copper concentrations in relation to land use and soil properties in Yangtze River Delta of China. Environ Monit Assess 155(1–4):205–213

    Article  CAS  Google Scholar 

  • Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, Cui F (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281

    Article  CAS  Google Scholar 

  • Zou WH, Han RP, Chen ZZ, Zhang JH, Shi J (2006) Kinetic study of adsorption of cu (II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloid Surface A 279(1-3):238–246

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support by Special Fund for Environmental Protection Scientific Research in the Public Interest (Project no. 201509032), the Natural Science Foundation of China (Project no. 41501537), and The High-level Leading Talent Introduction Program of GDAS. The authors also thank the national long-term soil experimental stations in China for soil collection, and Gillian Cozens and Cathy Fiebiger for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Ma.

Additional information

Responsible editor: Dong-Mei Zhou

Electronic supplementary material

ESM 1

(DOCX 596 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, J., Wei, D. et al. The solid-solution distribution of copper added to soils: influencing factors and models. J Soils Sediments 18, 2960–2969 (2018). https://doi.org/10.1007/s11368-018-1962-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-1962-y

Keywords

Navigation