Skip to main content

Advertisement

Log in

Oxidative stress in apoptosis and cancer: an update

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The oxygen paradox tells us that oxygen is both necessary for aerobic life and toxic to all life forms. Reactive oxygen species (ROS) touch every biological and medical discipline, especially those involving proliferative status, supporting the idea that active oxygen may be increased in tumor cells. In fact, metabolism of oxygen and the resulting toxic byproducts can cause cancer and death. Efforts to counteract the damage caused by ROS are gaining acceptance as a basis for novel therapeutic approaches, and the field of prevention of cancer is experiencing an upsurge of interest in medically useful antioxidants. Apoptosis is an important means of regulating cell numbers in the developing cell system, but it is so important that it must be controlled. Normal cell death in homeostasis of multicellular organisms is mediated through tightly regulated apoptotic pathways that involve oxidative stress regulation. Defective signaling through these pathways can contribute to both unbalance in apoptosis and development of cancer. Finally, in this review, we discuss new knowledge about recent tools that provide powerful antioxidant strategies, and designing methods to deliver to target cells, in the prevention and treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ad-SOD:

Adenoviral vector expressing SOD

Apaf-1:

Apoptosis-activating factor

AP-1:

Activator protein-1

ASK1:

Apoptosis signal-regulating kinase 1

BCNU:

1,3-Bis(2-chloroethyl)-1-nitrosurea

cAMP:

Cyclic adenosine monophosphate

CAT:

Catalase

CREBP:

cAMP-responsive element binding protein

EC-SOD:

Extracellular superoxide dismutase

EH:

Epoxide hydrolase

ERK:

Extracellular signal-regulated kinase

EUK:

Eukarion

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Oxidized glutathione

GST:

Glutathione S-transferase

GT:

Glucuronosyl transferase

H2O2 :

Hydrogen peroxide

HIV:

Human immunodeficiency virus

HUVEC:

Human umbilical vein endothelial cell

JNK:

c-Jun NH2-terminal kinase

MAPK:

Mitogen-activated protein kinase

MDM:

Murine double minute

NFκB:

Necrosis factor kappa B

NQO:

NAD(P)H:quinone oxidoreductase

oxLDL:

Oxidized low-density lipoproteins

O ·−2 :

Superoxide anion radical

PCNA:

Proliferating cell nuclear antigen

PTD:

Small protein domains

ROS:

Reactive oxygen species

SAPK:

Stress-activated protein kinases

SOD:

Superoxide dismutase

TNF:

Tumor necrosis factor

References

  • Acharya A, Das I, Chandhok D, Saha T (2010) Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev 3:23–34

    PubMed  Google Scholar 

  • Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66

    PubMed  CAS  Google Scholar 

  • Aggarwal S (2010) What’s fueling the biotech engine—2009–2010. Nat Biotechnol 28:1165–1171

    PubMed  CAS  Google Scholar 

  • Amaral JD, Xavier JM, Steer CJ, Rodrigues CM (2010) Targeting the p53 pathway of apoptosis. Curr Pharm Des 16:2493–2503

    PubMed  CAS  Google Scholar 

  • Aniya Y, Imaizumi N (2011) Mitochondrial glutathione transferases involving a new function for membrane permeability transition pore regulation. Drug Metab Rev 43:292–299

    PubMed  CAS  Google Scholar 

  • Antosiewicz J, Ziolkowski W, Kar S, Powolny AA, Singh SV (2008) Role of reactive oxygen intermediates in cellular responses to dietary cancer chemopreventive agents. Planta Med 74:1570–1579

    PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Cramaro F et al (2002) The solution structure of reduced dimeric copper zinc superoxide dismutase. The structural effects of dimerization. Eur J Biochem 269:1905–1915

    PubMed  CAS  Google Scholar 

  • Bandoh N, Hayashi T, Kishibe K et al (2002) Prognostic value of p53 mutations, bax, and spontaneous apoptosis in maxillary sinus squamous cell carcinoma. Cancer 94:1968–1980

    PubMed  CAS  Google Scholar 

  • Bannister WH, Bannister JV (1987) Factor analysis of the activities of superoxide dismutase, catalase and glutathione peroxidase in normal tissues and neoplastic cell lines. Free Radic Res Commun 4:1–13

    PubMed  CAS  Google Scholar 

  • Bannister WH, Bannister JV, Barra D et al (1991) Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme. Free Radic Res Commun 12–13:349–361

    PubMed  Google Scholar 

  • Batinić-Haberle I, Rebouças JS, Spasojević I (2010) Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 13:877–918

    PubMed  Google Scholar 

  • Baudin B (2002) New aspects on angiotensin-converting enzyme: from gene to disease. Clin Chem Lab Med 40:256–265

    PubMed  CAS  Google Scholar 

  • Bencini A, Failli P, Valtancoli B, Bani D (2010) Low molecular weight compounds with transition metals as free radical scavengers and novel therapeutic agents. Cardiovasc Hematol Agents Med Chem 8:128–146

    PubMed  CAS  Google Scholar 

  • Benhar M, Dalyot I, Engelberg D et al (2001) Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 21:6913–6926

    PubMed  CAS  Google Scholar 

  • Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3:420–425

    PubMed  CAS  Google Scholar 

  • Bernardi P, Petronilli V, Di Lisa F et al (2001) A mitochondrial perspective on cell death. Trends Biochem Sci 26:112–117

    PubMed  CAS  Google Scholar 

  • Bitomsky N, Hofmann TG (2009) Apoptosis and autophagy: regulation of apoptosis by DNA damage signalling—roles of p53, p73 and HIPK2. FEBS J 276:6074–6083

    PubMed  CAS  Google Scholar 

  • Blanchard CZ, Chapman-Smith A, Wallace JC et al (1999) The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin. J Biol Chem 274:31767–31769

    PubMed  CAS  Google Scholar 

  • Bojes HK, Feng X, Kehrer JP et al (1999) Apoptosis in hematopoietic cells (FL5.12) caused by interleukin-3 withdrawal: relationship to caspase activity and the loss of glutathione. Cell Death Differ 6:61–70

    PubMed  CAS  Google Scholar 

  • Bouillet P, Purton JF, Godfrey DI et al (2002) BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922–926

    PubMed  CAS  Google Scholar 

  • Bowler RP, Nicks M, Olsen DA et al (2002) Furin proteolytically processes the heparin-binding region of extracellular superoxide dismutase. J Biol Chem 277:16505–16511

    PubMed  CAS  Google Scholar 

  • Bravard A, Cherbonnel-Lasserre C, Reillaudou M et al (1998) Modifications of the antioxidant enzymes in relation to chromosome imbalances in human melanoma cell lines. Melanoma Res 8:329–335

    PubMed  CAS  Google Scholar 

  • Brown MR, Miller FJ, Li WG et al (1999) Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res 85:524–533

    PubMed  CAS  Google Scholar 

  • Buettner GR (2011) Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem 11:341–346

    PubMed  CAS  Google Scholar 

  • Buschfort-Papewalis C, Moritz T, Liedert B et al (2002) Down-regulation of DNA repair in human CD34(+) progenitor cells corresponds to increased drug sensitivity and apoptotic response. Blood 100:845–853

    PubMed  CAS  Google Scholar 

  • Cannio R, Fiorentino G, Morana A, Rossi M, Bartolucci S (2000) Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra- and extracellular oxidative stress. Front Biosci 5:D768–D779

    PubMed  CAS  Google Scholar 

  • Carta S, Tassi S, Pettinati I, Delfino L, Dinarello CA, Rubartelli A (2011) The rate of interleukin-1beta secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. J Biol Chem 286:27069–27080

    PubMed  CAS  Google Scholar 

  • Catuogno S, Cerchia L, Romano G, Pognonec P, Condorelli G, de Franciscis V (2012) miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene. doi:10.1038/onc.2012.51

    PubMed  Google Scholar 

  • Chaiswing L, Zhong W, Cullen JJ, Oberley LW, Oberley TD (2008) Extracellular redox state regulates features associated with prostate cancer cell invasion. Cancer Res 68:5820–5826

    PubMed  CAS  Google Scholar 

  • Chen F, Demers LM, Vallyathan V et al (1999) Involvement of 5′-flanking kappaB-like sites within bcl-x gene in silica-induced Bcl-x expression. J Biol Chem 274:35591–35595

    PubMed  CAS  Google Scholar 

  • Chia KY, Lim SP, Oei AA et al (1994) Acquisition of immunogenicity by AKR leukemic cells following DNA-mediated gene transfer is associated with the reduction of constitutive reactive superoxide radicals. Int J Cancer 57:216–223

    PubMed  CAS  Google Scholar 

  • Chikatsu N, Nakamura Y, Sato H et al (2002) p53 mutations and tetraploids under r- and K-selection. Oncogene 21:3043–3049

    PubMed  CAS  Google Scholar 

  • Cho G, Kang S, Seo SJ et al (1997) The transcriptional repression of the human Cu/Zn superoxide dismutase(sod1) gene by the anticancer drug, mitomycin C(MMC). Biochem Mol Biol Int 42:949–956

    PubMed  CAS  Google Scholar 

  • Cloutier M, Wang E (2011) Dynamic modeling and analysis of cancer cellular network motifs. Integr Biol (Camb) 3:724–732

    CAS  Google Scholar 

  • Copin JC, Gasche Y, Li Y et al (2001) Prolonged hypoxia during cell development protects mature manganese superoxide dismutase-deficient astrocytes from damage by oxidative stress. FASEB J 15:525–534

    PubMed  CAS  Google Scholar 

  • D’Alessandro A, Zolla L (2011) The SODyssey: superoxide dismutases from biochemistry, through proteomics, to oxidative stress, aging and nutraceuticals. Expert Rev Proteomics 8:405–421

    PubMed  Google Scholar 

  • Dang TP (2012) Notch, apoptosis and cancer. Adv Exp Med Biol 727:199–209

    PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z, Traganos F, Wlodkowic D (2009) Impaired DNA damage response—an Achilles’ heel sensitizing cancer to chemotherapy and radiotherapy. Eur J Pharmacol 625:143–150

    PubMed  CAS  Google Scholar 

  • de Souza Prestes A, Stefanello ST, Salman SM et al (2012) Antioxidant activity of β-selenoamines and their capacity to mimic different enzymes. Mol Cell Biochem 365:85–92

    PubMed  CAS  Google Scholar 

  • De-Leo ME, Landriscina M, Palazzotti B et al (1997) Iron modulation of LPS-induced manganese superoxide dismutase gene expression in rat tissues. FEBS Lett 403:131–135

    PubMed  CAS  Google Scholar 

  • D’Emilio A, Biagiotti L, Burattini S et al (2010) Morphological and biochemical patterns in skeletal muscle apoptosis. Histol Histopathol 25:21–32

    PubMed  Google Scholar 

  • Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    PubMed  CAS  Google Scholar 

  • Dhar SK, Tangpong J, Chaiswing L, Oberley TD, St Clair DK (2011) Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages. Cancer Res 71:6684–6695

    PubMed  CAS  Google Scholar 

  • Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F (2011) Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomed 6:877–895

    CAS  Google Scholar 

  • DiStefano JF, Beck G, Zucker S (1983) Mechanism of BCG-activated macrophage-induced tumor cell cytotoxicity: evidence for both oxygen-dependent and independent mechanisms. Int Arch Allergy Appl Immunol 70:252–260

    PubMed  CAS  Google Scholar 

  • Duffy AM, O’Brien T, McMahon JM (2010) Generation of antioxidant adenovirus gene transfer vectors encoding CuZnSOD, MnSOD, and catalase. Methods Mol Biol 594:381–393

    PubMed  CAS  Google Scholar 

  • Duranteau J, Chandel NS, Kulisz A et al (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273:11619–11624

    PubMed  CAS  Google Scholar 

  • Dutartre P (2001) Multimeric receptors, new targets for the pharmaceutical industry. J Soc Biol 195:437–442

    PubMed  CAS  Google Scholar 

  • Egusquiaguirre SP, Igartua M, Hernández RM, Pedraz JL (2012) Nanoparticle delivery systems for cancer therapy: advances in clinical and preclinical research. Clin Transl Oncol 14:83–93

    PubMed  CAS  Google Scholar 

  • El-Kady A, Sun Y, Li YX, Liao DJ (2011) Cyclin D1 inhibits whereas c-Myc enhances the cytotoxicity of cisplatin in mouse pancreatic cancer cells via regulation of several members of the NF-κB and Bcl-2 families. J Carcinog 10:24

    PubMed  CAS  Google Scholar 

  • Epperly MW, Epstein CJ, Travis EL et al (2000) Decreased pulmonary radiation resistance of manganese superoxide dismutase (MnSOD)-deficient mice is corrected by human manganese superoxide dismutase-plasmid/liposome (SOD2-PL) intratracheal gene therapy. Radiat Res 154:365–374

    PubMed  CAS  Google Scholar 

  • Epperly MW, Carpenter M, Agarwal A, Mitra P, Nie S, Greenberger JS (2004) Intraoral manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis. In Vivo (Athens, Greece) 18:401–410

    CAS  Google Scholar 

  • Fedeles BI, Zhu AY, Young KS et al (2011) Chemical genetics analysis of an aniline mustard anticancer agent reveals complex I of the electron transport chain as a target. J Biol Chem 286:33910–33920

    PubMed  CAS  Google Scholar 

  • Firuzi O, Miri R, Tavakkoli M, Saso L (2011) Antioxidant therapy: current status and future prospects. Curr Med Chem 18:3871–3888

    PubMed  CAS  Google Scholar 

  • Fischer U, Janssen K, Schulze-Osthoff K (2007) Cutting-edge apoptosis-based therapeutics: a panacea for cancer? BioDrugs 21:273–297

    PubMed  CAS  Google Scholar 

  • Fleenor BS, Seals DR, Zigler ML, Sindler AL (2012) Superoxide-lowering therapy with TEMPOL reverses arterial dysfunction with aging in mice. Aging Cell 11:269–276

    PubMed  CAS  Google Scholar 

  • Formentini L, Sánchez-Aragó M, Sánchez-Cenizo L, Cuezva JM (2012) The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell 45:731–742

    PubMed  CAS  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    PubMed  CAS  Google Scholar 

  • Gabai VL, Yaglom JA, Volloch V et al (2000) Hsp72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol Cell Biol 20:6826–6836

    PubMed  CAS  Google Scholar 

  • Gabai VL, Mabuchi K, Mosser DD et al (2002) Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 22:3415–3424

    PubMed  CAS  Google Scholar 

  • Galán A, García-Bermejo L, Troyano A et al (2001) The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium, heat, X-rays). Eur J Cell Biol 80:312–320

    PubMed  Google Scholar 

  • Ganapathy E, Su F, Meriwether D et al (2012) D-4F, an apoA-I mimetic peptide, inhibits proliferation and tumorigenicity of epithelial ovarian cancer cells by upregulating the antioxidant enzyme MnSOD. Int J Cancer 130:1071–1081

    PubMed  CAS  Google Scholar 

  • García-España A, Biria S, Malumbres M et al (1999) Targeted gene transfer system using a streptavidin-transforming growth factor-alpha chimeric protein. DNA Cell Biol 18:743–749

    PubMed  Google Scholar 

  • Garrett MD, Collins I (2011) Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci 32:308–316

    PubMed  CAS  Google Scholar 

  • Gennari FJ (2011) Pathophysiology of metabolic alkalosis: a new classification based on the centrality of stimulated collecting duct ion transport. Am J Kidney Dis 58:626–636

    PubMed  CAS  Google Scholar 

  • Genova ML, Lenaz G (2011) New developments on the functions of coenzyme Q in mitochondria. BioFactors 37:330–354

    PubMed  CAS  Google Scholar 

  • Gervais JL, Seth P, Zhang H (1998) Cleavage of CDK inhibitor p21(Cip1/Waf1) by caspases is an early event during DNA damage-induced apoptosis. J Biol Chem 273:19207–19212

    PubMed  CAS  Google Scholar 

  • Giridharan P, Somasundaram ST, Perumal K et al (2002) Novel substituted methylenedioxy lignan suppresses proliferation of cancer cells by inhibiting telomerase and activation of c-myc and caspases leading to apoptosis. Br J Cancer 87:98–105

    PubMed  CAS  Google Scholar 

  • Goh AM, Coffill CR, Lane DP (2011) The role of mutant p53 in human cancer. J Pathol 223:116–126

    PubMed  CAS  Google Scholar 

  • Gotoh Y, Cooper JA (1998) Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J Biol Chem 273:17477–17482

    PubMed  CAS  Google Scholar 

  • Guarneri V, Dieci MV, Conte P (2012) Enhancing intracellular taxane delivery: current role and perspectives of nanoparticle albumin-bound paclitaxel in the treatment of advanced breast cancer. Expert Opin Pharmacother 13:395–406

    PubMed  CAS  Google Scholar 

  • Gupta B, Torchilin VP (2006) Transactivating transcriptional activator-mediated drug delivery. Expert Opin Drug Deliv 3:177–190

    PubMed  CAS  Google Scholar 

  • Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci 899:136–147

    PubMed  CAS  Google Scholar 

  • Gutteridge JM, Halliwell B (2010) Antioxidants: molecules, medicines, and myths. Biochem Biophys Res Commun 393:561–564

    PubMed  CAS  Google Scholar 

  • Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513

    PubMed  CAS  Google Scholar 

  • Hara K, Kasahara E, Takahashi N et al (2011) Mitochondria determine the efficacy of anticancer agents that interact with DNA but not the cytoskeleton. J Pharmacol Exp Ther 337:838–845

    PubMed  CAS  Google Scholar 

  • Harada-Shiba M, Kinoshita M, Kamido H et al (1998) Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. J Biol Chem 273:9681–9687

    PubMed  CAS  Google Scholar 

  • Hempel N, Carrico PM, Melendez JA (2011) Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer Agents Med Chem 11:191–201

    PubMed  CAS  Google Scholar 

  • Hill RP, Zaidi A, Mahmood J, Jelveh S (2011) Investigations into the role of inflammation in normal tissue response to irradiation. Radiother Oncol 101:73–79

    PubMed  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM et al (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    PubMed  CAS  Google Scholar 

  • Hogg RT, Thorpe P, Gerard RD (2011) Retargeting adenoviral vectors to improve gene transfer into tumors. Cancer Gene Ther 18:275–287

    PubMed  CAS  Google Scholar 

  • Holley AK, Dhar SK, St Clair DK (2010) Manganese superoxide dismutase vs. p53: regulation of mitochondrial ROS. Mitochondrion 10:649–661

    PubMed  CAS  Google Scholar 

  • Horiguchi M, Koyanagi S, Okamoto A, Suzuki SO, Matsunaga N, Ohdo S (2012) Stress-regulated transcription factor ATF4 promotes neoplastic transformation by suppressing expression of the INK4a/ARF cell senescence factors. Cancer Res 72:395–401

    PubMed  CAS  Google Scholar 

  • Hsieh Y, Guan Y, Tu C et al (1998) Probing the active site of human manganese superoxide dismutase: the role of glutamine 143. Biochemistry 37:4731–4739

    PubMed  CAS  Google Scholar 

  • Hursting SD, Berger NA (2010) Energy balance, host-related factors, and cancer progression. J Clin Oncol 28:4058–4065

    PubMed  Google Scholar 

  • Ikeyama S, Kokkonen G, Shack S et al (2002) Loss in oxidative stress tolerance with aging linked to reduced extracellular signal-regulated kinase and Akt kinase activities. FASEB J 16:114–116

    PubMed  CAS  Google Scholar 

  • Imlay JA (2011) Redox pioneer: professor Irwin Fridovich. Antioxid Redox Signal 14:335–340

    PubMed  CAS  Google Scholar 

  • Imoto K, Kukidome D, Nishikawa T et al (2006) Impact of mitochondrial reactive oxygen species and apoptosis signal-regulating kinase 1 on insulin signaling. Diabetes 55:1197–1204

    PubMed  CAS  Google Scholar 

  • Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta 1807:735–745

    PubMed  CAS  Google Scholar 

  • Ingraham RH, Gless RD, Lo HY (2011) Soluble epoxide hydrolase inhibitors and their potential for treatment of multiple pathologic conditions. Curr Med Chem 18:587–603

    PubMed  CAS  Google Scholar 

  • James BP, Staatz WD, Wilkinson ST, Meuillet E, Powis G (2009) Superoxide dismutase is regulated by LAMMER kinase in Drosophila and human cells. Free Radic Biol Med 46:821–827

    PubMed  CAS  Google Scholar 

  • Janssen A, Medema RH (2011) Mitosis as an anti-cancer target. Oncogene 30:2799–2809

    PubMed  CAS  Google Scholar 

  • Järver P, Langel U (2004) The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today 9:395–402

    PubMed  Google Scholar 

  • Jazirehi AR (2010) Regulation of apoptosis-associated genes by histone deacetylase inhibitors: implications in cancer therapy. Anticancer Drugs 21:805–813

    PubMed  CAS  Google Scholar 

  • Jiang S, Cai J, Wallace DC et al (1999) Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA. Signaling pathway involving release and caspase 3 activation is conserved. J Biol Chem 274:29905–29911

    PubMed  CAS  Google Scholar 

  • Jiang XY, Qian LP, Zheng XJ, Xia YY, Jiang YB, da Sun Y (2009) Interventional effect of Ginkgo biloba extract on the progression of gastric precancerous lesions in rats. J Dig Dis 10:293–299

    PubMed  Google Scholar 

  • Johnson M (2012) Chemotherapy treatment decision making by professionals and older patients with cancer: a narrative review of the literature. J Cancer Care (Engl) 21:3–9

    CAS  Google Scholar 

  • Joneson T, Bar-Sagi D (1998) A Rac1 effector site controlling mitogenesis through superoxide production. J Biol Chem 273:17991–17994

    PubMed  CAS  Google Scholar 

  • Kabore AF, Johnston JB, Gibson SB (2004) Changes in the apoptotic and survival signaling in cancer cells and their potential therapeutic implications. Curr Cancer Drug Targets 4:147–163

    PubMed  CAS  Google Scholar 

  • Kagan VE, Fabisiak JP, Shvedova AA et al (2000) Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett 477:1–7

    PubMed  CAS  Google Scholar 

  • Kaivosaari S, Finel M, Koskinen M (2011) N-glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases. Xenobiotica 41:652–669

    PubMed  CAS  Google Scholar 

  • Kaneda Y (2010) Update on non-viral delivery methods for cancer therapy: possibilities of a drug delivery system with anticancer activities beyond delivery as a new therapeutic tool. Expert Opin Drug Deliv 7:1079–1093

    PubMed  CAS  Google Scholar 

  • Kathiria AS, Butcher LD, Feagins LA, Souza RF, Boland CR, Theiss AL (2012) Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells. PLoS One 7:e31231

    PubMed  CAS  Google Scholar 

  • Kerbel RS, Yu J, Tran J et al (2001) Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20:79–86

    PubMed  CAS  Google Scholar 

  • Kim Y, Suh N, Sporn M et al (2002) An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 277:22320–22329

    PubMed  CAS  Google Scholar 

  • Kizaki M, Sakashita A, Karmakar A et al (1993) Regulation of manganese superoxide dismutase and other antioxidant genes in normal and leukemic hematopoietic cells and their relationship to cytotoxicity by tumor necrosis factor. Blood 82:1142–1150

    PubMed  CAS  Google Scholar 

  • Knox KS, Adams JR, Djulbegovic B et al (2000) Reporting and dissemination of industry versus non-profit sponsored economic analyses of six novel drugs used in oncology. Ann Oncol 11:1591–1595

    PubMed  CAS  Google Scholar 

  • Korner I, Weber-Nordt R, Pfaff P et al (1997) Analysis of a regulatory element in the 5′-untranslated region of the bcl-2 gene. FEBS Lett 406:31–32

    PubMed  CAS  Google Scholar 

  • Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201

    PubMed  CAS  Google Scholar 

  • Kudoh T, Kimura J, Lu ZG et al (2010) D4S234E, a novel p53-responsive gene, induces apoptosis in response to DNA damage. Exp Cell Res 316:2849–2858

    PubMed  CAS  Google Scholar 

  • Kwon O, Soung NK, Thimmegowda NR et al (2012) Patulin induces colorectal cancer cells apoptosis through EGR-1 dependent ATF3 up-regulation. Cell Signal 24:943–950

    PubMed  CAS  Google Scholar 

  • Langan AR, Khan MA, Yeung IW, Van Dyk J, Hill RP (2006) Partial volume rat lung irradiation: the protective/mitigating effects of Eukarion-189, a superoxide dismutase-catalase mimetic. Radiother Oncol 79:231–238

    PubMed  CAS  Google Scholar 

  • Lanza V, Vecchio G (2009) New conjugates of superoxide dismutase/catalase mimetics with cyclodestrins. J Inorg Biochem 103:381–388

    PubMed  CAS  Google Scholar 

  • Lautraite S, Musonda AC, Doehmer J et al (2002) Flavonoids inhibit genetic toxicity produced by carcinogens in cells expressing CYP1A2 and CYP1A1. Mutagenesis 17:45–53

    PubMed  CAS  Google Scholar 

  • Lee J, Giordano S, Zhang J (2012a) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523–540

    PubMed  CAS  Google Scholar 

  • Lee MJ, Ye AS, Gardino AK et al (2012b) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149:780–794

    PubMed  CAS  Google Scholar 

  • Levin ED, Christopher NC, Lateef S et al (2002) Extracellular superoxide dismutase overexpression protects against aging-induced cognitive impairment in mice. Behav Genet 32:119–125

    PubMed  Google Scholar 

  • Li Y, Severn A, Rogers MV et al (1992) Catalase inhibits nitric oxide synthesis and the killing of intracellular Leishmania major in murine macrophages. Eur J Immunol 22:441–446

    PubMed  CAS  Google Scholar 

  • Li C, Hashimi SM, Good DA et al (2012) Apoptosis and microRNA aberrations in cancer. Clin Exp Pharmacol Physiol. doi:10.1111/j.1440-1681.2012.05700.x

    Google Scholar 

  • Liang HL, Hilton G, Mortensen J, Regner K, Johnson CP, Nilakantan V (2009) MnTMPyP, a cell-permeant SOD mimetic, reduces oxidative stress and apoptosis following renal ischemia-reperfusion. Am J Physiol Renal Physiol 296:F266–F276

    PubMed  CAS  Google Scholar 

  • Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH (2011) MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 47:163–174

    PubMed  CAS  Google Scholar 

  • Liochev SI, Fridovich I (2001) Copper, zinc superoxide dismutase as a univalent NO(−) oxidoreductase and as a dichlorofluorescin peroxidase. J Biol Chem 276:35253–35257

    PubMed  CAS  Google Scholar 

  • Liochev SI, Fridovich I (2010) Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase. Free Radic Biol Med 48:1565–1569

    PubMed  CAS  Google Scholar 

  • Liu X, Liu L, Xu Q, Wu P, Zuo X, Ji A (2012a) MicroRNA as a novel drug target for cancer therapy. Expert Opin Biol Ther 12:573–580

    PubMed  CAS  Google Scholar 

  • Liu K, Wang X, Fan W, Zhu Q, Yang J, Gao J et al (2012b) Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector. Int J Nanomed 7:1149–1162

    CAS  Google Scholar 

  • Lockshin RA, Zakeri Z (2001) Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2:545–550

    PubMed  CAS  Google Scholar 

  • Lodygin D, Tarasov V, Epanchintsev A et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600

    PubMed  CAS  Google Scholar 

  • Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294

    PubMed  CAS  Google Scholar 

  • Luo C, Urgard E, Vooder T, Metspalu A (2011) The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: aging and anti-aging. Med Hypotheses 77:174–178

    PubMed  CAS  Google Scholar 

  • Maffei R, Fiorcari S, Bulgarelli J et al (2011) Physical contact with endothelial cells through β1- and β2-integrins rescues chronic lymphocytic leukemia from spontaneous and drug-induced apoptosis and induces a peculiar gene expression profile on leukemic cells. Haematologica. doi:10.3324/haematol.2011.054924

    PubMed  Google Scholar 

  • Mailloux A, Grenet K, Bruneel A et al (2001) Anticancer drugs induce necrosis of human endothelial cells involving both oncosis and apoptosis. Eur J Cell Biol 80:442–449

    PubMed  CAS  Google Scholar 

  • Maiti AK (2012) Genetic determinants of oxidative stress-mediated sensitization of drug-resistant cancer cells. Int J Cancer 130:1–9

    PubMed  CAS  Google Scholar 

  • Majima HJ, Oberley TD, Furukawa K et al (1998) Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J Biol Chem 273:8217–8224

    PubMed  CAS  Google Scholar 

  • Manna SK, Aggarwal BB (2000) All-trans-retinoic acid upregulates TNF receptors and potentiates TNF-induced activation of nuclear factors-kappaB, activated protein-1 and apoptosis in human lung cancer cells. Oncogene 19:2110–2119

    PubMed  CAS  Google Scholar 

  • Manna SK, Zhang HJ, Yan T et al (1998) Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J Biol Chem 273:13245–13254

    PubMed  CAS  Google Scholar 

  • Marklund SL, Westman NG, Lundgren E et al (1982) Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 42:1955–1961

    PubMed  CAS  Google Scholar 

  • Maroz A, Kelso GF, Smith RA, Ware DC, Anderson RF (2008) Pulse radiolysis investigation on the mechanism of the catalytic action of Mn(II)-pentaazamacrocycle compounds as superoxide dismutase mimetics. J Phys Chem A 112:4929–4935

    PubMed  CAS  Google Scholar 

  • Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    PubMed  CAS  Google Scholar 

  • Martinou JC, Desagher S, Antonsson B (2000) Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2:E41–E43

    PubMed  CAS  Google Scholar 

  • Maslon MM, Hupp TR (2010) Drug discovery and mutant p53. Trends Cell Biol 20:542–555

    PubMed  CAS  Google Scholar 

  • Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    PubMed  Google Scholar 

  • Matés JM, Sánchez-Jiménez F (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32:157–170

    PubMed  Google Scholar 

  • Matés JM, Pérez-Gómez C, Núñez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    PubMed  Google Scholar 

  • Matés JM, Pérez-Gómez C, Núñez de Castro I et al (2002) Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 34:439–458

    PubMed  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2008) Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 82:273–299

    PubMed  Google Scholar 

  • Matés JM, Segura JA, Campos-Sandoval JA et al (2009a) Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 41:2051–2061

    PubMed  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2009b) Natural antioxidants: therapeutic prospects for cancer and neurological diseases. Mini Rev Med Chem 9:1202–1214

    PubMed  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med 49:1328–1341

    PubMed  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2011) Anticancer antioxidant regulatory functions of phytochemicals. Curr Med Chem 18:2315–2338

    PubMed  Google Scholar 

  • McCaul JA, Gordon KE, Clark LJ et al (2002) Telomerase inhibition and the future management of head-and-neck cancer. Lancet Oncol 3:280–288

    PubMed  CAS  Google Scholar 

  • McCleary-Wheeler AL, McWilliams R, Fernandez-Zapico ME (2012) Aberrant signaling pathways in pancreatic cancer: a two compartment view. Mol Carcinog 51:25–39

    PubMed  CAS  Google Scholar 

  • McCubrey JA, Steelman LS, Abrams SL et al (2012) Targeting the cancer initiating cell: the ultimate target for cancer therapy. Curr Pharm Des 18:1784–1795

    PubMed  CAS  Google Scholar 

  • Miriyala S, Holley AK, St Clair DK (2011) Mitochondrial superoxide dismutase-signals of distinction. Anticancer Agents Med Chem 11:181–190

    PubMed  CAS  Google Scholar 

  • Miura K, Fujibuchi W, Ishida K et al (2011) Inhibitor of apoptosis protein family as diagnostic markers and therapeutic targets of colorectal cancer. Surg Today 41:175–182

    PubMed  CAS  Google Scholar 

  • Moffitt KL, Martin SL, Walker B (2010) From sentencing to execution—the processes of apoptosis. J Pharm Pharmacol 62:547–562

    PubMed  CAS  Google Scholar 

  • Mollace V, Salvemini D, Riley DP et al (2002) The contribution of oxidative stress in apoptosis of human-cultured astroglial cells induced by supernatants of HIV-1-infected macrophages. J Leukoc Biol 71:65–72

    PubMed  CAS  Google Scholar 

  • Montero AJ, Jassem J (2011) Cellular redox pathways as a therapeutic target in the treatment of cancer. Drugs 71:1385–1396

    PubMed  CAS  Google Scholar 

  • Moon YJ, Lee JY, Oh MS et al (2012) Inhibition of inflammation and oxidative stress by Angelica dahuricae radix extract decreases apoptotic cell death and improves functional recovery after spinal cord injury. J Neurosci Res 90:243–256

    PubMed  CAS  Google Scholar 

  • Morris MC, Chaloin L, Mery J et al (1999) A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Res 27:3510–3517

    PubMed  CAS  Google Scholar 

  • Morris MC, Depollier J, Mery J et al (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19:1173–1176

    PubMed  CAS  Google Scholar 

  • Mow BM, Blajeski AL, Chandra J et al (2001) Apoptosis and the response to anticancer therapy. Curr Opin Oncol 13:453–462

    PubMed  CAS  Google Scholar 

  • Muñoz-Pinedo C (2012) Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense. Adv Exp Med Biol 738:124–143

    PubMed  Google Scholar 

  • Murakami A, Nakamura Y, Torikai K et al (2000) Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer Res 60:5059–5066

    PubMed  CAS  Google Scholar 

  • Musonda CA, Chipman JK (1998) Quercetin inhibits hydrogen peroxide (H2O2)-induced NF-kappaB DNA binding activity and DNA damage in HepG2 cells. Carcinogenesis 19:1583–1589

    PubMed  CAS  Google Scholar 

  • Nagami H, Yoshimoto N, Umakoshi H (2005) Liposome-assisted activity of superoxide dismutase under oxidative stress. J Biosci Bioeng 99:423–428

    PubMed  CAS  Google Scholar 

  • Namiki Y, Fuchigami T, Tada N et al (2011) Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res 44:1080–1093

    PubMed  CAS  Google Scholar 

  • Nie J, Liu L, Zheng W et al (2012) microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis 33:220–225

    PubMed  CAS  Google Scholar 

  • Nozik-Grayck E, Suliman HB, Piantadosi CA (2005) Extracellular superoxide dismutase. Int J Biochem Cell Biol 37:2466–2471

    PubMed  CAS  Google Scholar 

  • Oberley LW (2005) Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed Pharmacother 59:143–148

    PubMed  CAS  Google Scholar 

  • Offen D, Beart PM, Cheung NS et al (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Proc Natl Acad Sci USA 95:5789–5794

    PubMed  CAS  Google Scholar 

  • Offen D, Kaye JF, Bernard O et al (2000) Mice overexpressing Bcl-2 in their neurons are resistant to myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). J Mol Neurosci 15:167–176

    PubMed  CAS  Google Scholar 

  • Okamoto K, Mizuno M, Nakahara N et al (2002) Process of apoptosis induced by TNF-alpha in murine fibroblast Ltk-cells: continuous observation with video enhanced contrast microscopy. Apoptosis 7:77–86

    PubMed  CAS  Google Scholar 

  • Pan H, Marsh JN, Christenson ET et al (2012) Postformulation peptide drug loading of nanostructures. Methods Enzymol 508:17–39

    PubMed  CAS  Google Scholar 

  • Pani G, Galeotti T (2011) Role of MnSOD and p66shc in mitochondrial response to p53. Antioxid Redox Signal 15:1715–1727

    PubMed  CAS  Google Scholar 

  • Pani G, Bedogni B, Anzevino R et al (2000) Deregulated manganese superoxide dismutase expression and resistance to oxidative injury in p53-deficient cells. Cancer Res 60:4654–4660

    PubMed  CAS  Google Scholar 

  • Paonessa JD, Ding Y, Randall KL et al (2011) Identification of an unintended consequence of Nrf2-directed cytoprotection against a key tobacco carcinogen plus a counteracting chemopreventive intervention. Cancer Res 71:3904–3911

    PubMed  CAS  Google Scholar 

  • Pasquetto MV, Vecchia L, Covini D, Digilio R, Scotti C (2011) Targeted drug delivery using immunoconjugates: principles and applications. J Immunother 34:611–628

    PubMed  CAS  Google Scholar 

  • Paulo CS, Pires das Neves R, Ferreira LS (2011) Nanoparticles for intracellular-targeted drug delivery. Nanotechnology 22:494002

    PubMed  Google Scholar 

  • Pekova S, Mazal O, Cmejla R et al (2011) A comprehensive study of TP53 mutations in chronic lymphocytic leukemia: analysis of 1287 diagnostic and 1148 follow-up CLL samples. Leuk Res 35:889–898

    PubMed  CAS  Google Scholar 

  • Pena JC, Rudin CM, Thompson CB (1998) A Bcl-xL transgene promotes malignant conversion of chemically initiated skin papillomas. Cancer Res 58:2111–2116

    PubMed  CAS  Google Scholar 

  • Plymate SR, Haugk KH, Sprenger CC et al (2003) Increased manganese superoxide dismutase (SOD-2) is part of the mechanism for prostate tumor suppression by Mac25/insulin-like growth factor binding-protein-related protein-1. Oncogene 22:1024–1034

    PubMed  CAS  Google Scholar 

  • Rahman I (2012) Pharmacological antioxidant strategies as therapeutic interventions for COPD. Biochim Biophys Acta 1822:714–728

    PubMed  CAS  Google Scholar 

  • Raj L, Ide T, Gurkar AU et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234

    PubMed  CAS  Google Scholar 

  • Rathmell JC, Thompson CB (2002) Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 109(Suppl):S97–S107

    PubMed  CAS  Google Scholar 

  • Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

    PubMed  CAS  Google Scholar 

  • Reaume AG, Elliott JL, Hoffman EK et al (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    PubMed  CAS  Google Scholar 

  • Ria F, Landriscina M, Remiddi F et al (2001) The level of manganese superoxide dismutase content is an independent prognostic factor for glioblastoma. Biological mechanisms and clinical implications. Br J Cancer 84:529–534

    PubMed  CAS  Google Scholar 

  • Robbins D, Zhao Y (2011) The role of manganese superoxide dismutase in skin cancer. Enzyme Res 2011:409295

    PubMed  Google Scholar 

  • Rodriguez F, Lopez B, Perez C et al (2011) Chronic tempol treatment attenuates the renal hemodynamic effects induced by a heme oxygenase inhibitor in streptozotocin diabetic rats. Am J Physiol Regul Integr Comp Physiol 301:R1540–R1548

    PubMed  CAS  Google Scholar 

  • Safavi M, Foroumadi A, Nakhjiri M et al (2012) Complexes of 2-hydroxyacetophenone semicarbazones: a novel series of superoxide dismutase mimetics. Bioorg Med Chem Lett 20:3070–3073

    Google Scholar 

  • Sahin K, Sahin N, Kucuk O (2010) Lycopene and chemotherapy toxicity. Nutr Cancer 62:988–995

    PubMed  CAS  Google Scholar 

  • Salvemini D, Riley DP (2000) Nonpeptidyl mimetics of superoxide dismutase in clinical therapies for diseases. Cell Mol Life Sci 57:1489–1492

    PubMed  CAS  Google Scholar 

  • Salvemini D, Wang ZQ, Zweier JL et al (1999) A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 286:304–306

    PubMed  CAS  Google Scholar 

  • Salvemini D, Riley DP, Cuzzocrea S (2002) SOD mimetics are coming of age. Nat Rev Drug Discov 1:367–374

    PubMed  CAS  Google Scholar 

  • Samai M, Sharpe MA, Gard PR, Chatterjee PK (2007) Comparison of the effects of the superoxide dismutase mimetics EUK-134 and tempol on paraquat-induced nephrotoxicity. Free Radic Biol Med 43:528–534

    PubMed  CAS  Google Scholar 

  • Samlowski WE, Petersen R, Cuzzocrea S et al (2003) A nonpeptidyl mimic of superoxide dismutase, M40403, inhibits dose-limiting hypotension associated with interleukin-2 and increases its antitumor effects. Nat Med 9:750–755

    PubMed  CAS  Google Scholar 

  • Sentman ML, Brannstrom T, Marklund SL (2002) EC-SOD and the response to inflammatory reactions and aging in mouse lung. Free Radic Biol Med 32:975–981

    PubMed  CAS  Google Scholar 

  • Senturker S, Karahalil B, Inal M et al (1997) Oxidative DNA base damage and antioxidant enzyme levels in childhood acute lymphoblastic leukemia. FEBS Lett 416:286–290

    PubMed  CAS  Google Scholar 

  • Shay JW, Wright WE (2011) Role of telomeres and telomerase in cancer. Semin Cancer Biol 21:349–353

    PubMed  CAS  Google Scholar 

  • Shi L, Nishioka WK, Th-ng J et al (1994) Premature p34cdc2 activation required for apoptosis. Science 263:1143–1145

    PubMed  CAS  Google Scholar 

  • Shi X, Dong Z, Huang C et al (1999) The role of hydroxyl radical as a messenger in the activation of nuclear transcription factor NF-kappaB. Mol Cell Biochem 194:63–70

    PubMed  CAS  Google Scholar 

  • Shime H, Matsumoto M, Oshiumi H et al (2012) Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci USA 109:2066–2071

    PubMed  CAS  Google Scholar 

  • Shimizu T, Nojiri H, Kawakami S, Uchiyama S, Shirasawa T (2010) Model mice for tissue-specific deletion of the manganese superoxide dismutase gene. Geriatr Gerontol Int 10(Suppl 1):S70–S79

    PubMed  Google Scholar 

  • Shou J, Ali-Osman F, Multani AS et al (2002) Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene 21:878–889

    PubMed  CAS  Google Scholar 

  • Sikkeland LI, Thorgersen EB, Haug T, Mollnes TE (2007) Complement activation and cytokine response by BioProtein, a bacterial single cell protein. Clin Exp Immunol 148:146–152

    PubMed  CAS  Google Scholar 

  • Singh RK, Dorf L, DeMartino A et al (2011) Oral RKS262 reduces tumor burden in a neuroblastoma xenograft animal model and mediates cytotoxicity through SAPK/JNK and ROS activation in vitro. Cancer Biol Ther 11:1036–1045

    PubMed  CAS  Google Scholar 

  • Song H, Oh S, Oh HJ, Lim DS (2010) Role of the tumor suppressor RASSF2 in regulation of MST1 kinase activity. Biochem Biophys Res Commun 391:969–973

    PubMed  CAS  Google Scholar 

  • St-Clair DK, Porntadavity S, Xu Y et al (2002) Transcription regulation of human manganese superoxide dismutase gene. Methods Enzymol 349:306–312

    PubMed  CAS  Google Scholar 

  • Sui X, Jin L, Huang X, Geng S, He C, Hu X (2011) p53 Signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment. Autophagy 7:565–571

    PubMed  CAS  Google Scholar 

  • Suksrichavalit T, Prachayasittikul S, Piacham T, Isarankura-Na-Ayudhya C, Nantasenamat C, Prachayasittikul V (2008) Copper complexes of nicotinic-aromatic carboxylic acids as superoxide dismutase mimetics. Molecules 13:3040–3056

    PubMed  CAS  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    PubMed  CAS  Google Scholar 

  • Tabassum S, Al-Asbahy WM, Afzal M, Arjmand F, Bagchi V (2012) Molecular drug design, synthesis and structure elucidation of a new specific target peptide based metallo drug for cancer chemotherapy as topoisomerase I inhibitor. Dalton Trans 41:4955–4964

    PubMed  CAS  Google Scholar 

  • Tailor IK, Cook J, Reilly JT et al (2012) Acute myeloid leukaemia associated with Muir-Torre variant of hereditary non-polyposis colon cancer (HNPCC): implications for inherited and acquired mutations in DNA mismatch repair genes. Br J Haematol 156:289–291

    PubMed  CAS  Google Scholar 

  • Tan PY, Chang CW, Chng KR, Wansa KD, Sung WK, Cheung E (2012) Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival. Mol Cell Biol 32:399–414

    PubMed  CAS  Google Scholar 

  • Tao F, Johns RA (2010) Tat-mediated peptide intervention in analgesia and anesthesia. Drug Dev Res 71:99–105

    PubMed  CAS  Google Scholar 

  • Tarhini AA, Belani CP, Luketich JD et al (2011) A phase I study of concurrent chemotherapy (paclitaxel and carboplatin) and thoracic radiotherapy with swallowed manganese superoxide dismutase plasmid liposome protection in patients with locally advanced stage III non-small-cell lung cancer. Hum Gene Ther 22:336–342

    PubMed  CAS  Google Scholar 

  • Thomadaki H, Scorilas A (2006) BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 43:1–67

    PubMed  CAS  Google Scholar 

  • Thomas R, Sharifi N (2012) SOD mimetics: a novel class of androgen receptor inhibitors that suppresses castration-resistant growth of prostate cancer. Mol Cancer Ther 11:87–97

    PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    PubMed  CAS  Google Scholar 

  • Timares L, Katiyar SK, Elmets CA (2008) DNA damage, apoptosis and langerhans cells—activators of UV-induced immune tolerance. Photochem Photobiol 84:422–436

    PubMed  CAS  Google Scholar 

  • Todaro M, Catalano M, Di Liberto D et al (2002) High levels of exogenous C2-ceramide promote morphological and biochemical evidences of necrotic features in thyroid follicular cells. J Cell Biochem 86:162–173

    PubMed  CAS  Google Scholar 

  • Tominaga T, Hachiya M, Shibata T, Sakamoto Y, Taki K, Akashi M (2012) Exogenously-added copper/zinc superoxide dismutase rescues damage of endothelial cells from lethal irradiation. J Clin Biochem Nutr 50:78–83

    PubMed  CAS  Google Scholar 

  • Tormo D, Checińska A, Alonso-Curbelo D et al (2009) Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 16:103–114

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Cossman J, Jaffe E et al (1985) Involvement of the bcl-2 gene in human follicular lymphoma. Science 228:1440–1443

    PubMed  CAS  Google Scholar 

  • Viita H, Pacholska A, Ahmad F et al (2012) 15-Lipoxygenase-1 induces lipid peroxidation and apoptosis, and improves survival in rat malignant glioma. In Vivo (Athens, Greece) 26:1–8

    CAS  Google Scholar 

  • Vincent A, Babu S, Heckert E et al (2009) Protonated nanoparticle surface governing ligand tethering and cellular targeting. ACS Nano 3:1203–1211

    PubMed  CAS  Google Scholar 

  • Vinothini G, Murugan RS, Nagini S (2009) Evaluation of molecular markers in a rat model of mammary carcinogenesis. Oncol Res 17:483–493

    PubMed  CAS  Google Scholar 

  • Volloch V, Gabai VL, Rits S et al (1999) ATPase activity of the heat shock protein hsp72 is dispensable for its effects on dephosphorylation of stress kinase JNK and on heat-induced apoptosis. FEBS Lett 461:73–76

    PubMed  CAS  Google Scholar 

  • Vorotnikova E, Rosenthal RA, Tries M, Doctrow SR, Braunhut SJ (2010) Novel synthetic SOD/catalase mimetics can mitigate capillary endothelial cell apoptosis caused by ionizing radiation. Radiat Res 173:748–759

    PubMed  CAS  Google Scholar 

  • Walsh CM, Edinger AL (2010) The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol Rev 236:95–109

    PubMed  CAS  Google Scholar 

  • Wang X, Martindale JL, Holbrook NJ (2000) Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 275:39435–39443

    PubMed  CAS  Google Scholar 

  • Wang Z, Goulet R III, Stanton KJ, Sadaria M, Nakshatri H (2005) Differential effect of anti-apoptotic genes Bcl-xL and c-FLIP on sensitivity of MCF-7 breast cancer cells to paclitaxel and docetaxel. Anticancer Res 25:2367–2379

    PubMed  CAS  Google Scholar 

  • Watanabe N (1998) Endogenous tumor necrosis factor and doxorubicin sensitivity in leukemic patients. Leuk Lymphoma 30(5–6):477–482

    PubMed  CAS  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17–29

    PubMed  CAS  Google Scholar 

  • Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049

    PubMed  CAS  Google Scholar 

  • Wolfer A, Ramaswamy S (2011) MYC and metastasis. Cancer Res 71:2034–2037

    PubMed  CAS  Google Scholar 

  • Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    PubMed  CAS  Google Scholar 

  • Wyllie AH (2010) “Where, O death, is thy sting?” A brief review of apoptosis biology. Mol Neurobiol 42:4–9

    PubMed  CAS  Google Scholar 

  • Yang JQ, Li S, Domann FE et al (1999) Superoxide generation in v-Ha-ras-transduced human keratinocyte HaCaT cells. Mol Carcinog 26:180–188

    PubMed  CAS  Google Scholar 

  • Yang JQ, Buettner GR, Domann FE et al (2002) v-Ha-ras mitogenic signaling through superoxide and derived reactive oxygen species. Mol Carcinog 33:206–218

    PubMed  CAS  Google Scholar 

  • Yang Y, Zhang YM, Chen Y, Zhao D, Chen JT, Liu Y (2012) Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chemistry 18:4208–4215

    PubMed  CAS  Google Scholar 

  • Yao L, Zhang Y, Chen K, Hu X, Xu LX (2011) Discovery of IL-18 as a novel secreted protein contributing to doxorubicin resistance by comparative secretome analysis of MCF-7 and MCF-7/Dox. PLoS One 6:e24684

    PubMed  CAS  Google Scholar 

  • Yoo BH, Wu X, Derouet M, Haniff M, Eskelinen EL, Rosen K (2009) Hypoxia-induced downregulation of autophagy mediator Beclin 1 reduces the susceptibility of malignant intestinal epithelial cells to hypoxia-dependent apoptosis. Autophagy 5:1166–1179

    PubMed  CAS  Google Scholar 

  • Yu CL, Tsai MH (2001) Embryonic apoptosis-inducing proteins exhibited anticancer activity in vitro and in vivo. Anticancer Res 21:1839–1856

    PubMed  CAS  Google Scholar 

  • Yu A, Choi J, Ohno K et al (2000) Specific cell targeting for delivery of toxins into small-cell lung cancer using a streptavidin fusion protein complex. DNA Cell Biol 19:383–388

    PubMed  CAS  Google Scholar 

  • Yu JL, Rak JW, Coomber BL et al (2002) Effect of p53 status on tumor response to antiangiogenic therapy. Science 295:1526–1528

    PubMed  CAS  Google Scholar 

  • Yuzhalin AE, Kutikhin AG (2012) Inherited variations in the SOD and GPX gene families and cancer risk. Free Radic Res 46:581–599

    PubMed  CAS  Google Scholar 

  • Zafarana G, Ishkanian AS, Malloff CA et al (2012) Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer. doi:10.1002/cncr.26729

    PubMed  Google Scholar 

  • Zakeri Z, Lockshin RA (2002) Cell death during development. J Immunol Methods 265:3–20

    PubMed  CAS  Google Scholar 

  • Zakeri Z, Lockshin RA, Martínez AC (2001) Meeting report: mechanisms of cell death 2000. Apoptosis 6:403–404

    PubMed  CAS  Google Scholar 

  • Zhai X, Huang W, Liu J et al (2011) Micelles from amphiphilic block copolyphosphates for drug delivery. Macromol Biosci 11:1603–1610

    PubMed  CAS  Google Scholar 

  • Zhang Y, Yang JM (2011) The impact of cellular senescence in cancer therapy: is it true or not? Acta Pharmacol Sin 32:1199–1207

    PubMed  CAS  Google Scholar 

  • Zhang X, Zhang X, Wang F (2012) Intracellular transduction and potential of Tat PTD and its analogs: from basic drug delivery mechanism to application. Expert Opin Drug Deliv 9:457–472

    PubMed  CAS  Google Scholar 

  • Zhao Y, Xue Y, Oberley TD et al (2001) Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res 61:6082–6088

    PubMed  CAS  Google Scholar 

  • Zhao J, Lu Y, Shen HM (2012) Targeting p53 as a therapeutic strategy in sensitizing TRAIL-induced apoptosis in cancer cells. Cancer Lett 314:8–23

    PubMed  CAS  Google Scholar 

  • Zong D, Hååg P, Yakymovych I, Lewensohn R, Viktorsson K (2011) Chemosensitization by phenothiazines in human lung cancer cells: impaired resolution of γH2AX and increased oxidative stress elicit apoptosis associated with lysosomal expansion and intense vacuolation. Cell Death Dis 2:e181

    PubMed  CAS  Google Scholar 

  • Zwacka RM, Dudus L, Epperly MW et al (1998) Redox gene therapy protects human IB-3 lung epithelial cells against ionizing radiation-induced apoptosis. Hum Gene Ther 9:1381–1386

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Ministerio de Educación of Spain, PHB2010-0014-PC; Ministerio de Ciencia y Tecnología of Spain, SAF2010-17573; Junta de Andalucía, Proyectos de Investigación de Excelencia, Convocatoria 2010, CVI-6656, Spain; grant RD06/1012 of the RTA RETICS network from the Spanish Health Institute Carlos III; and Consejería de Salud, Junta de Andalucía, PI-0825-2010, Spain.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Matés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matés, J.M., Segura, J.A., Alonso, F.J. et al. Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 86, 1649–1665 (2012). https://doi.org/10.1007/s00204-012-0906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0906-3

Keywords

Navigation