Skip to main content
Log in

Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl.

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Forty-five-days old plants of Indian senna (Cassia angustifolia Vahl.) were subjected to 0–500 µM lead acetate (Pb-Ac) in pot culture. Changes in contents of thiobarbituric acid reactive substances (TBARS), ascorbate, glutathione, proline, sennosides (a+b), and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT) were studied at pre-flowering (60 d after sawing, DAS), flowering (90 DAS) and post-flowering (120 DAS) stages of plant development. Compared with the controls, the Pb-Ac treated plants showed an increase in contents of TBARS, dehydroascorbate, oxidized and total glutathione at all stages of growth. However, sennoside yield and contents of ascorbate and reduced form of glutathione declined. Proline content increased at 60 DAS but declined thereafter. Activities of SOD, APX, GR and CAT were markedly increased. Sennoside content was higher at 60 and 90 DAS but lower at 120 DAS, compared to the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

DAS:

days after sowing

GR:

glutathione reductase

SOD:

superoxide dismutase

TBARS:

thiobarbituric acid reactive substances

References

  • Aebi, H.E.: Catalase in vitro.-Methods Enzymol. 105: 121–126, 1984.

    PubMed  CAS  Google Scholar 

  • Alia, K., Saradhi, P.P.: Proline accumulation under heavy metal stress.-J. Plant Physiol. 138: 554–558, 1991.

    CAS  Google Scholar 

  • Allen, R.D., Webb, R.P., Schake, S.A.: Use of transgenic plants to study antioxidant defenses.-Free Radical Biol. Med. 23: 473–479, 1997.

    Article  CAS  Google Scholar 

  • Alscher, R.G., Donahue, J.L., Cramer, C.L.: Reactive oxygen species and antioxidants: relationship in green cells.-Physiol. Plant. 100: 224–233, 1997.

    Article  CAS  Google Scholar 

  • Alscher, R.G., Erturk, N., Heath, L.S.: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants.-J. exp. Bot. 53: 1331–1341, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M.E.: Determination of glutathione and glutathione disulfides in biological samples.-Methods Enzymol. 113: 548–570, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Arshi, A., Abdin, M.Z., Iqbal, M.: Growth and metabolism of senna as affected by salt stress.-Biol. Plant. 45: 295–298, 2002.

    Article  Google Scholar 

  • Arshi, A., Abdin, M.Z., Iqbal, M.: Changes in biochemical status and growth performance of senna (Cassia angustifolia Vahl.) grown under salt stress.-Phytomorphology 45: 295–298, 2004.

    Google Scholar 

  • Asada, K.: Production and action of active oxygen in photosynthetic tissue.-In: Foyer, C.H., Mullineaux, P.M. (ed.): Causes of Photooxidative Stress and Amelioration of Defense System in Plants. Pp. 187–192. CRC Press, Boca Raton 1994.

    Google Scholar 

  • Bates, L.S., Walderen, R.D., Taere, I.D.: Rapid determination of free proline for water stress studies.-Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bilia, A.R., Cioni, P., Morelli, I., Coppi, A., Leppi, A., Tomei, P.E.: Essential oil of Saturega montana L. composition and yield of plants grown under different environmental conditions.-J. essential Oil Res. 4: 563–568, 1993.

    Google Scholar 

  • Buettner, G.R., Jurkiewiez, B.A.: Chemistry and biochemistry of ascorbic acid.-In: Cadenas, E., Packer, L. (ed.): Handbook of Antioxidants. Pp. 91–115. Marcel Dekker, New York 1996.

    Google Scholar 

  • Choudhuri, M.A.: Free radicals and leaf senescence: a review.-Plant Physiol. Biochem. 15: 18–29, 1988.

    Google Scholar 

  • Cochram, W.G., Cox, G.M.: Experimental Designs.-Wiley, New York 1957.

    Google Scholar 

  • Dhindsa, R.H., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT.-J. exp. Bot. 32: 93–101, 1981.

    Article  CAS  Google Scholar 

  • Eun, S., Youn, H.S., Lee, Y.: Lead disturbs microtubule organization in the root meristem of Zea mays.-Physiol. Plant. 110: 357–365, 2000.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Halliwell, B.: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism.-Planta 133: 21–25, 1976.

    Article  Google Scholar 

  • Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M.: Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling.-Physiol. Plant. 100: 241–254, 1997.

    Article  CAS  Google Scholar 

  • Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A., Ben-Hayyim, G.: Salt and oxidative stress: Similar and specific responses and their relation to salt tolerance in Citrus.-Planta 203: 460–469, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Han, Y.S., Heijden, R., Lefeber, A.W.M., Erkelens, C., Verpoorte, R.: Biosynthesis of anthraquinones in cell cultures of Cinchona ‘Robusta’ proceeds via the methylerythritol 4-phosphate pathway.-Phytochemistry 59: 45–55, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R.H., Packer, L.: Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Hertwig, B., Steb, P., Feierabend, J.: Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions.-Plant Physiol. 100: 1547–1553, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kastori, S., Petrovic, M., Petrovic, N.: Effect of excess lead, cadmium, copper and zinc on water relations in sunflower.-J. Plant Nutr. 15: 2527–2439, 1992.

    Google Scholar 

  • Kato, M., Simizu, S.: Chlorophyll metabolism in higher plants. VI. Involvement of peroxidase in chlorophyll degradation.-Plant Cell Physiol. 26: 1291–1301, 1985.

    CAS  Google Scholar 

  • Kerk, N.M., Feldman, L.J.: A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems.-Development 121: 2825–2833, 1995.

    CAS  Google Scholar 

  • Kishor, P.B.K., Hong, Z., Miao, G.H., Hu, C.A.A., Verma, D.P.S., Hong, Z.L., Miao, G.H.: Overexpression of delta-1 pyroline 5′-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plant.-Plant Physiol. 108: 1387–1394, 1995.

    PubMed  CAS  Google Scholar 

  • Laemli, J., Verhaeren, E., Cuvelee, J.: Research on drugs containing anthraquinone principles. A note of alcoholic washing of senna leaflets.-Plant Med. Phytotherap. 19: 57–61, 1985.

    Google Scholar 

  • Law, M.E., Charles, S.A., Halliwell, B.: Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts: The effect of hydrogen peroxide and of paraquat.-Biochem. J. 210: 899–903, 1983.

    PubMed  CAS  Google Scholar 

  • Liso, R., De Gara, L., Tommasi, F., Arrigoni, O.: Ascorbic acid requirement for increased peroxidase activity during potato tuber slice ageing.-FEBS Lett. 187: 141–145, 1985.

    Article  CAS  Google Scholar 

  • Lutts, S., Majerus, V., Kinet, J.M.: NaCl effects on proline metabolism in rice (Oryza sativa) seedlings.-Physiol. Plant. 105: 450–458, 1999.

    Article  CAS  Google Scholar 

  • Maars, K.A.: The functions and regulation of glutathione-S-transferases in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 127–158, 1996.

    Article  Google Scholar 

  • MacRae, E.A., Ferguson, I.B.: Changes in catalase activity and H2O2 concentration in plants in response to low temperature.-Physiol. Plant. 65: 51–56, 1985.

    Article  CAS  Google Scholar 

  • May, M.J., Vernoux, T., Lever, C., Van Montague, M., Inze, D.: Glutathione homeostasis in plants: implication for environmental sensing and plant development.-J. exp. Bot. 49: 649–667, 1998.

    Article  CAS  Google Scholar 

  • Mazen, A.M.A.: Accumulation of four metals in tissue of Corchorus olitorius and possible mechanism of their tolerance.-Biol. Plant. 48: 267–272, 2004.

    Article  CAS  Google Scholar 

  • McKersie, B.D., Bowley, S.R., Harjanto, E., Leprince, O.: Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase.-Plant Physiol. 111: 1177–1181, 1996.

    PubMed  CAS  Google Scholar 

  • Mittova, V., Tal, M., Volokita, M., Guy, M.: Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species.-Physiol. Plant. 115: 393–400, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nijs, D., Kelley, P.M.: Vitamin C and E donate single hydrogen atoms in vitro.-FEBS Lett. 284: 147–151, 1991.

    Article  Google Scholar 

  • Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control.-Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Padh, H.: Cellular functions of ascorbic acid.-Biochem. Cell Biol. 68: 1166–1173, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Piqueras, A., Olmas, E., Martinez-Solano, J.R., Hellin, E.: Cadmium induced oxidative burst in tobacco BY cells: time course, subcellular location and antioxidant response.-Free Radical Res. 31( Suppl.): S33–S38, 1999.

    Article  CAS  Google Scholar 

  • Qadir, S., Qureshi, M.I., Javed, S., Abdin, M.Z.: Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd-stress.-Plant Sci. 167: 1171–1181, 2004.

    Article  CAS  Google Scholar 

  • Qureshi, M.I., Israr, M., Abdin, M.Z., Iqbal, M.: Responses of Artemisia annua L. to lead and salt-induced oxidative stress.-Environ. exp. Bot. 53: 185–193, 2005.

    Article  CAS  Google Scholar 

  • Rao, M.V.: Cellular detoxification mechanisms to determine age dependent injury in tropical plant exposed to SO2.-J. Plant Phyiol. 140: 733–740, 1992.

    CAS  Google Scholar 

  • Reddy, A.M., Kumar, SG., Jyothsnakumari, G., Thimmanaik, S., Sudhakar, C.: Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bangalgram (Cicer arietinum L.).-Chemosphere 60: 97–104, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg, H.: Glutathione metabolism and possible biological roles in higher plants.-Phytochemistry 21: 2771–2781, 1982.

    Article  CAS  Google Scholar 

  • Ruley, AT., Sharma, N.C., Sahi, S.V.: Antioxidant defense in a lead accumulating plant, Sesbania drummondii.-Plant Physiol. Biochem. 42: 899–906, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sen Gupta, A., Webb, R.P., Holaday, A.S., Allen, R.D.: Overexpression of superoxide dismutase protects plants from oxidative stress.-Plant Physiol. 37: 347–353, 1993.

    Google Scholar 

  • Simonovičová, M., Tamás, L., Huttová, J., Mistrík, I.: Effect of aluminium on oxidative stress related enzymes activities in barley roots.-Biol. Plant. 48: 261–266, 2004.

    Article  Google Scholar 

  • Singh, D.V., Srivastava, G.C., Abdin, M.Z.: Effect of ascorbic acid and benzyl adenine on superoxide dismutase activity in senna (Cassia angustifolia Vahl.) leaves in relation to senescence and water stress.-Indian J. Plant Physiol. 4: 210–214, 1999.

    CAS  Google Scholar 

  • Slooten, L., Capiau, K., Van Camp, W., Van Montagu, M., Sybesma, C., Inze, D.: Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts.-Plant Physiol. 107: 737–750, 1995.

    PubMed  CAS  Google Scholar 

  • Smirnoff, N.: The role of active oxygen in the response of plants to water deficit and desiccation.-New Phytol. 125: 27–58, 1993.

    Article  CAS  Google Scholar 

  • Srivastava, V.K., Maheshwari, M.L., Mandal, S.: A rapid HPLC method for analysis of sennosides in senna.-Indian J. pharm. Sci. 45: 230–231, 1983a.

    CAS  Google Scholar 

  • Srivastava, V.K., Maheshwari, M.L., Mandal, S.: Investigation of chemical assay of sennoside in senna (Cassia angustifolia Vahl.).-Int. J. trop. Agr. 1: 231–238, 1983b.

    CAS  Google Scholar 

  • Thompson, J.E.: The molecular basis for membrane deterioration during senescence.-In: Nooden, L.D., Leopold, A.C. (ed.): Senescence and Ageing in Plants. Pp. 52–83. Academic Press, San Diego 1988.

    Google Scholar 

  • Thompson, J.E., Ledge, R.L., Barber, R.F.: The role of free radicals in senescence and wounding.-New Phytol. 105: 317–344, 1987.

    Article  CAS  Google Scholar 

  • Van Assche, F., Cardinaels, C., Clijsters, H.: Induction of enzyme capacity in plants as a result of heavy metal toxicity: Dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium.-Environ. Pollut. 52: 103–115, 1988.

    Article  PubMed  Google Scholar 

  • Zhang, J., Kirkham, M.B.: Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species.-Plant Cell Physiol. 35: 785–791, 1994.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qureshi, M.I., Abdin, M.Z., Qadir, S. et al. Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl.. Biol Plant 51, 121–128 (2007). https://doi.org/10.1007/s10535-007-0024-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-007-0024-x

Additional key words

Navigation