Skip to main content
Log in

Isolation and speciation of tidepool fishes as a consequence of Quaternary sea-level fluctuations

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Dispersal is fundamental to the colonization of oceanic islands that were never connected to larger landmasses. For species with limited dispersal capabilities, colonization of remote islands can be followed by isolation and speciation. The tidepool fish community of Trindade Island, 1,160 km off the Brazilian coast at the eastern end of the Vitória-Trindade Chain, is composed of 18 species from 11 families. Four endemics accounted for 48 % of the total number and 10 % of the total fish weight in tidepools. The fact that the five species confirmed to be endemic to Trindade are restricted to intertidal and shallow waters indicate that in the present interglacial period the seamounts of the Vitória-Trindade Chain do not allow dispersal following a stepping-stones model. Thus, seamounts must have been used as stepping-stones when emerged during lower sea-level periods of the Pleistocene, but this connection was definitively interrupted when they became submerged at the end of the last glaciation. This highlights the importance of considering sea level fluctuations as a structuring factor of intertidal and shallow water communities at oceanic localities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida FFM (2006) Ilhas oceânicas brasileiras e suas relações com a tectônica atlântica. Terræ Didatica 2(1):3–18

    Google Scholar 

  • Arakaki S, Tokeshi M (2011) Analysis of spatial niche structure in coexisting tidepool fishes: null models based on multi-scale experiments. J Anim Ecol 80(1):137–147. doi:10.1111/j.1365-2656.2010.01749.x

    Article  PubMed  Google Scholar 

  • Barlow GW (1999) Fish life on the littoral edge. In: Almada VC, Oliveira RF, Gonçalves EJ (eds) Behaviour and conservation of littoral fishes. ISPA, Lisboa, pp 3–32

    Google Scholar 

  • Barreiros JP, Bertoncini Á, Machado L, Hostim-Silva M, Santos RS (2004) Diversity and seasonal changes in the ichthyofauna of rocky tidal pools from Praia Vermelha and São Roque, Santa Catarina. Braz Arch Biol Technol 47:291–299. doi:10.1590/S1516-89132004000200017

    Article  Google Scholar 

  • Barton MG (1982) Intertidal vertical distribution and diets of five species of central California stichaeoid fishes. Calif Fish Game 68:174–182

    Google Scholar 

  • Bennett BA, Griffith CL (1984) Factors affecting the distribution, abundance and diversity of rock-pool fishes on the Cape Peninsula, South Africa. S Afr J Zool 19:97–104

    Google Scholar 

  • Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. J Biogeogr 39(1):12–30. doi:10.1111/j.1365-2699.2011.02613.x

    Article  Google Scholar 

  • Castellanos-Galindo GA, Giraldo A, Rubio EA (2005) Community structure of an assemblage of tidepool fishes on a tropical eastern Pacific rocky shore, Colombia. J Fish Biol 67:392–408. doi:10.1111/j.1095-8649.2005.00735.x

    Article  Google Scholar 

  • Cordani UG (1970) Idade do vulcanismo no Oceano Atlântico Sul. Bol Inst Geoc Astro Univ São Paulo 1:9–75

    Google Scholar 

  • Cowie RH, Holland BS (2006) Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J Biogeogr 33(2):193–198. doi:10.1111/j.1365-2699.2005.01383.x

    Article  Google Scholar 

  • Cox TE, Baumgartner E, Philippoff J, Boyle KS (2010) Spatial and vertical patterns in the tidepool fish assemblage on the island of O'ahu. Environ Biol Fish 90(4):329–342. doi:10.1007/s10641-010-9744-4

    Article  Google Scholar 

  • Davis JLD (2000) Spatial and seasonal patterns of habitat partitioning in a guild of southern California tidepool fishes. Mar Ecol Prog Ser 196:253–268. doi:10.3354/meps196253

    Article  Google Scholar 

  • DeMartini EE (1999) Intertidal spawning. In: Horn MH, Martin KLM, Chotkowski MA (eds) Intertidal fishes: life in two worlds. Academic, San Diego, pp 143–164

    Chapter  Google Scholar 

  • Feitoza BM, Rocha LA, Luiz-Júnior OJ, Floeter SR, Gasparini JL (2003) Reef fishes of St. Paul’s Rocks: new records and notes on biology and zoogeography. Aqua 7(2):61–82

    Google Scholar 

  • Floeter S, Gasparini JL (2000) The southwestern Atlantic reef fish fauna: composition and zoogeographic patterns. J Fish Biol 56(5):1099–1114. doi:10.1111/j.1095-8649.2000.tb02126.x

    Article  Google Scholar 

  • Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CEL, Gasparini JL, Brito A, Falcón JM, Bowen BW, Bernardi G (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47. doi:10.1111/j.1365-2699.2007.01790.x

    Google Scholar 

  • Gasparini JL, Floeter SR (2001) The shore fishes of Trindade Island, western South Atlantic. J Nat Hist 35:1639–1656. doi:10.1080/002229301317092379

    Article  Google Scholar 

  • Gibson RN (1972) The vertical distribution and feeding relationships of intertidal fish on the Atlantic Coast of France. J Anim Ecol 41(1):189–207

    Article  Google Scholar 

  • Gibson RN (1986) Intertidal teleosts: life in a fluctuating environment. In: Pitcher TJ (ed) The behavior of teleosts fishes. Croom Helm, London, pp 388–407

    Chapter  Google Scholar 

  • Gibson RN, Yoshiyama RM (1999) Intertidal fish communities. In: Horn MH, Martin KLM, Chotkowski MA (eds) Intertidal fishes: life in two worlds. Academic, San Diego, pp 264–296

    Chapter  Google Scholar 

  • Griffiths SP, Davis AR, West RJ (2006) Role of habitat complexity in structuring temperate rockpool ichthyofaunas. Mar Ecol Prog Ser 313:227–239. doi:10.3354/meps313227

    Article  Google Scholar 

  • Grossman GD (1982) Dynamics and organization of a rocky intertidal fish assemblage: the persistence and resilience of taxocene structure. Am Nat 119(5):611–637

    Article  Google Scholar 

  • Horn MH, Martin KLM, Chotkowski MA (1999) Intertidal fishes: life in two worlds. Academic, San Diego

    Google Scholar 

  • Kimura M (1953) Stepping-stone model of population. Ann Rep Nat Inst Genet Japan 3:62–63

    Google Scholar 

  • Lambeck K, Esat TM, Potter E-K (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206. doi:10.1038/nature01089

    Article  CAS  PubMed  Google Scholar 

  • Leal JH, Bouchet P (1991) Distribution patterns and dispersal of prosobranch gastropods along a seamount chain in the Atlantic Ocean. J Mar Biol Assoc UK 71:11–25. doi:10.1017/S0025315400037358

    Article  Google Scholar 

  • Luiz OJ, Allen AP, Robertson DR, Floeter SR, Kulbicki M, Vigliola L, Becheler R, Madin JS (2013) Adult and larval traits as determinants of geographic range size among tropical reef fishes. P Natl Acad Sci-Biol 110(21):16498–16502. doi:10.1073/pnas.1304074110

    Article  CAS  Google Scholar 

  • Macieira RM, Joyeux J-C (2011) Distribution patterns of tidepool fishes on a tropical flat reef. Fish B-NOAA 109(3):305–315

    Google Scholar 

  • Mahon R, Mahon SD (1994) Structure and resilience of a tidepool fish assemblage at Barbados. Environ Biol Fish 41(1–4):171–190. doi:10.1007/BF00023811

    Article  Google Scholar 

  • Marliave JB (1977) Substratum preferences of settling larvae of marine fishes reared in the laboratory. J Exp Mar Biol Ecol 27(1):47–60. doi:10.1016/0022-0981(77)90053-3

    Article  Google Scholar 

  • Marliave JB (1986) Lack of planktonic dispersal of rocky intertidal fish larvae. T Am Fish Soc 115 (1):149–154. doi:10.1577/1548-8659(1986)115<149:lopdor>2.0.co;2

  • Moberg F, Rönnbäck P (2003) Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast Manag 46:27–46. doi:10.1016/S0964-5691(02)00119-9

    Article  Google Scholar 

  • Nelson JS (2006) Fishes of the World. 4th edn. John Wiley & Sons, Inc

  • Paterson AW, Whitfield AK (2000) Do shallow-water habitats function as refugia for juvenile fishes? Estuar Coast Shelf Sci 51(3):359–364. doi:10.1006/ecss.2000.0640

  • Paulay G (1990) Effects of late Cenozoic sea-level fluctuations on the bivalve faunas of tropical oceanic islands. Paleobiology 16(4):415–434

    Google Scholar 

  • Pfister CA (1999) Recruitment of intertidal fishes. In: Horn MH, Martin KLM, Chotkowski MA (eds) Intertidal fishes: life in two worlds. Academic, San Diego, pp 181–196

    Chapter  Google Scholar 

  • Pinheiro HT, Martins AS, Gasparini JL (2010) Impact of commercial fishing on Trindade Island and Martin Vaz Archipelago, Brazil: characteristics, conservation status of the species involved and prospects for preservation. Braz Arch Biol Technol 53:1417–1423. doi:10.1590/S1516-89132010000600018

    Article  Google Scholar 

  • Prochazka K, Chotkowski MA, Buth DG (1999) Biogeography of rocky intertidal fishes. In: Horn MH, Martin KLM, Chotkowski MA (eds) Intertidal fishes: life in two worlds. Academic, San Diego, pp 332–355

    Chapter  Google Scholar 

  • Rocha LA, Bowen BW (2008) Speciation in coral-reef fishes. J Fish Biol 72(5):1101–1121. doi:10.1111/j.1095-8649.2007.01770.x

    Article  Google Scholar 

  • Rojas JM, Ojeda FP (2010) Spatial distribution of intertidal fishes: a pattern dependent on body size and predation risk? Environ Biol Fish 87(3):175–185. doi:10.1007/s10641-010-9578-0

    Article  Google Scholar 

  • Rosa RS, Rosa IL, Rocha LA (1997) Diversidade da ictiofauna de poças de maré da praia do Cabo Branco, João Pessoa, Paraíba, Brasil. Rev Bras Zoo 14:201–212. doi:10.1590/S0101-81751997000100019

    Article  Google Scholar 

  • Salinas-de-León P, Jones T, Bell JJ (2012) Successful determination of larval dispersal distances and subsequent settlement for long-lived pelagic larvae. PLoS ONE 7(3):e32788. doi:10.1371/journal.pone.0032788

    Article  PubMed Central  PubMed  Google Scholar 

  • Sampaio CLS, Carvalho-Filho A, Feitoza BM, Ferreira CEL, Floeter SR, Gasparini JL, Rocha LA, Sazima I (2006) Peixes recifais endêmicos e ameaçados das Ilhas Oceânicas Brasileiras e do Complexo Recifal dos Abrolhos. In: Alves RJV, Castro JWA (eds) Ilhas oceânicas brasileiras da pesquisa ao manejo. MMA, SBF, Brasília, pp 215–234

    Google Scholar 

  • Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385

    PubMed  Google Scholar 

  • Simon T, Macieira RM, Joyeux J-C (2013) The shore fishes of the Trindade-Martin Vaz insular complex: an update. J Fish Biol 82:2113–2127. doi:10.1111/jfb.12126

    Article  CAS  PubMed  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179

    Article  Google Scholar 

  • ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289. doi:10.1007/BF00877430

    Article  Google Scholar 

  • Thomas AL et al (2009) Penultimate deglacial sea-level timing from Uranium/Thorium dating of Tahitian corals. Science 324(5931):1186–1189. doi:10.1126/science.1168754

    Article  CAS  PubMed  Google Scholar 

  • Valentim LPDF (2008) Estrutura da assembléia de peixes de poças de maré do arquipélago de Fernando de Noronha - PE, Brasil, a partir de métodos não destrutivos. Unpublished MSc dissertation, Universidade Federal da Paraíba, João Pessoa, PB

  • Wilson SK, Bellwood DR, Choat JH, Furnas MJ (2003) Detritus in the epilithic algal matrix and its use by coral reef fishes. In: Atkinson RJA, Gibson RN (eds) Oceanography and marine biology: an annual review, vol 41. CRC Press, New York, pp 279–309

    Google Scholar 

  • Zander CD, Nieder J, Martin K (1999) Vertical distribution patterns. In: Horn MH, Martin KLM, Chotkowski MA (eds) Intertidal fishes: life in two worlds. Academic, San Diego, pp 26–53

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Ruy B. Santos, Omar Quintanilha and Marcos Amaral for field support and Alfredo Carvalho-Filho and João Luiz Gasparini for insights. José Lima de Figueiredo kindly authorized the use of the fish illustrations. Benjamin Victor for reviewing earlier versions of the manuscript. Logistical support for field trips was provided by the First Naval District of the Brazilian Navy and the Projeto Tamar (Trindade and Martin Vaz), and the Brazilian Environmental Protection Agency ICMBio (Saint Paul’s Rocks, Fernando de Noronha Archipelago and Rocas Atoll). Post-graduate fellowships were provided by CAPES (to RMM and TS) and FAPESP (to CRP). Sampling was performed in according to law and animal care regulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael M. Macieira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macieira, R.M., Simon, T., Pimentel, C.R. et al. Isolation and speciation of tidepool fishes as a consequence of Quaternary sea-level fluctuations. Environ Biol Fish 98, 385–393 (2015). https://doi.org/10.1007/s10641-014-0269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-014-0269-0

Keywords

Navigation