Skip to main content
Log in

Comparative and evolutionary analysis in natural diploid and tetraploid weather loach Misgurnus anguillicaudatus based on cytochrome b sequence data in central China

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

To obtain the phylogenetic relationship between diploid and tetraploid Misgurnus anguillicaudatus, the mitochondrial cyt b gene in the diploid and tetraploid weather loach were isolated and sequenced. The DNA sequences were analyzed using MEGA 3.0 software to determine the phylogenetic relationship. Forty-five variable sites among cyt b gene sequences and 18 amino acid substitutions occurred within the diploid and tetraploid loaches as deduced from the nucleotide sequences analysis of the cyt b gene. The nucleotide pairwise distance between diploid and tetraploid loach ranged from 0.001 to 0.025. Phylogenetic analysis revealed evolutionary relationships between diploid and tetraploid loach. Our results indicated a significant difference between diploid and tetraploid loach about the cyt b gene. AMOVA analysis indicated that there were no significant genetic variations within diploid loaches (Fst = 0.2529, P > 0.05) and within tetraploid loaches (Fst = 0.0564, P > 0.05), neither. However, significant genetic differences were found between diploid and tetraploid loaches (Fst = 0.7634, P < 0.05). Thus, it is concluded that no reproductive isolation was found within the same cytotypes of different localities, but there was reproductive isolation between these two cytotypes. The diploid loach existed before the tetraploid loach in nature. The present study is the first to describe the phylogenetic relationships of natural polyploidy weather loach using mtDNA cyt b gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves MJ, Coelho MM, Collares PMJ (2001) Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111:375–385

    Article  CAS  PubMed  Google Scholar 

  • Arai K (2001) Genetic improvement of aquaculture finfish species by chromosome manipulation techniques in Japan. Aquaculture 197:205–228

    Article  CAS  Google Scholar 

  • Barluenga M, Meyer A (2005) Old fish in a young lake: stone loach (Pisces: Barbatula barbatula) populations in Lake Constance are genetically isolated by distance. Mol Ecol 14:1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Briolay J, Galtier N, Brito RM, Bouvet Y (1998) Molecular phylogeny of Cyprinidae inferred from cytochrome b DNA sequences. Mol Phylogenet Evol 9:100–108

    Article  CAS  PubMed  Google Scholar 

  • Crespi BJ, Fulton NJ (2004) Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny. Mol Phylogenet Evol 31:658–679

    Article  CAS  PubMed  Google Scholar 

  • David L, Blum S, Feldman MW, Lavi U, Hillel J (2003) Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Douglas MR, Brunner PC, Bernatchez L (1999) Do assemblages of Coregonus (Teleostei: Salmoniformes) in the Central Alpine region of Europe represent species flocks. Mol Ecol 8:589–603

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes applications to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidences limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo-Win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    CAS  PubMed  Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2000) Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.). Mol Ecol 9:615–628

    Article  CAS  PubMed  Google Scholar 

  • Gerlach G, Schardt U, Eckmann R, Meyer A (2001) Kin-structured subpopulations in Eurasian perch (Perca fluviatilis L.). Heredity 86:213–221

    Article  CAS  PubMed  Google Scholar 

  • He SP, Chen YJ, Zhang YP (1999) Preliminary study on mitochondrial cytochrome b DNA sequences and phylogeny of formalin fixed sisorid fishes. Zool Res 20:81–87 (in Chinese)

    CAS  Google Scholar 

  • Janko K, Kotlik P, Ráb P (2003) Evolutionary history of asexual hybrid loaches (Cobitis: Teleostei) inferred from phylogenetic analysis of mitochondrial DNA variation. J Evol Biol 16:1280–1287

    Article  CAS  PubMed  Google Scholar 

  • Johnson ML, Gaines MS (1990) Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Ann Rev Ecolog Syst 21:449–480

    Article  Google Scholar 

  • Khan MR, Arai K (2000) Allozyme variation and genetic differentiation in the loach Misgurnus anguillicaudatus. Fish Sci 66:211–222

    Article  CAS  Google Scholar 

  • Khan MMR, Arai K, Kuroda K, Umino T, Nakagawa H (2005) Genetic variation of Japanese loach inferred from restriction fragment length polymorphism analysis of mitochondrial DNA. Afr J Biotechnol 4:318–325

    CAS  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 86:6196–6200

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Gadagkar SR (2001) Disparity index: a simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics 158:1321–1327

    CAS  PubMed  Google Scholar 

  • Le Comber, SC, Smith, C (2004) Polyploidy in fishes: patterns and processes. Biol J Linn Soc 82:431–442

    Article  Google Scholar 

  • Levan A, Fredga K, Sandberg A (1964) Nomenclature for centrometric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Li K, Li Y, Zhou D (1983) A comparative study of the karyotypes in two species of mud loaches. Zool Res 4:75–81 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Ludwig A, BelWore NM, Pitra C (2001) Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158:1203–1215

    CAS  PubMed  Google Scholar 

  • Matsuo T, Ogawa Y, Kumamaru A, Ochi K, Adachi Y (2001) Complete Nucleotide Sequence of the cytochrome b gene of channel catfish Ictalurus punctatus and comparison of sequence homology among channel catfish and other fishes. Mol Biol 63:207–210

    CAS  Google Scholar 

  • Mayr E (1984) Evolution of fish species flocks: a commentary. In: Echelle AA, Kornfield IRV (eds) Evolution of fish species flocks. University of Maine at Orono Press, Orono Maine, pp 3–11

    Google Scholar 

  • Meyer A (1993) Evolution of mitochondrial DNA in fishes. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 2. Elsevier, Amsterdam, pp 1–38

    Google Scholar 

  • Morishima K, Horie S, Yamaha E, Arai K (2002) A cryptic clonal line of the loach Misgurnus anguillicaudatus (Teleostie: Cobitidae) evidenced by induced gynogenesis, interspecific hybridization, microsatellite genotyping and multi locus DNA fingerprinting. Zool Sci 19:565–575

    Article  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford Univ. Press, New York

    Google Scholar 

  • Ojima Y, Takai A (1979) The occurrence of spontaneous polyploid in the Japanese common loach, Misgurnus anguillicaudatus. Proc Japan Acad Ser B Phys Biol Sci 55:487–491

    Article  Google Scholar 

  • Peng ZG, He SP, Zhang YG (2004) Phylogenetic relationships of glyptosternoid fishes (Siluriformes:Sisoridae) inferred from mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol 31:979–987

    Article  CAS  PubMed  Google Scholar 

  • Phillips RB, Ráb P (2001) Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev (Cambridge) 76:1–25

    CAS  Google Scholar 

  • Quan CG, Wang J, Ding SX, Su YQ, Yao JG (2000) The karyotypes of Pseudosciaena crocea (Richardson). J Xiamen Univ (Nat Sci) 39: 107–110 (in Chinese with English abstract)

    Google Scholar 

  • Shao J, Shi GQ, Jin XL, Song MY, Shi JB, Jiang GB (2005) Development and Validation of an enzyme-linked immunosorbent assay for vitellogenin in Chinese loach (Misgurnus anguillicaudatus). Environ Int 31:763–770

    Article  CAS  PubMed  Google Scholar 

  • Shaw PW, Turner GF, Idid MR, Robinson RL, Carvalho GR (2000) Genetic population structure indicates sympatric speciation of Lake Malawi pelagic cichlids. Proc R Soc Lond B Biol Sci 267:2273–2280

    Article  CAS  Google Scholar 

  • Slechtova V, Bohlen J, Freyhof J, Rab P (2006) Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Mol Phylogenet Evol 39:529–541

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci U S A 92:8089–8091

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  PubMed  Google Scholar 

  • Song CB, Near TJ, Page LM (1998) Phylogenetic relations among percid fishes as inferred from mitochondrial cytochrome b DNA sequence data. Mol Phylogecetic Evol 10:343–35

    Google Scholar 

  • Tang QY, Liu HZ, Mayden R, Xiong BX (2006) Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes). Mol Phylogenet Evol 39:347–357

    Article  CAS  PubMed  Google Scholar 

  • Taylor MI, Verheyen E (2001) Microsatellite data reveals weak population substructuring in Copadichromis sp. ‘virginalis kajose’, a demersal cichlid from Lake Malawi, Africa. J Fish Biol 59:593–604

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Tsigenopoulous CS, Ráb P, Naran D, Berrebi P (2002) Multiple origins of polyploidy in the phylogeny of southern African barbs (Cyprinidae) as inferred from mtDNA markers. Heredity 88:466–473

    Article  Google Scholar 

  • Ueno K, Nagase A, Ye YJ (1988) Tetraploid origin of the karyotype of the Asian sucker, Myxocyprinus asiaticus. Jpn J Ichthyol 34:512–514

    Google Scholar 

  • Van OMJ, Turner GF (1997) Unusually fine-scale genetic structuring found in rapidly speciating Malawi cichlid fishes. Proc R Soc Lond B Biol Sci 264:1803–1812

    Article  Google Scholar 

  • Wang JP, Hsu KC, Chiang TY (2000) Mitochondrial DNA phylogeography of Crossocheilus paradoxus (Cyprinidae) in Taiwan. Mol Ecol 9:1483–1494

    Article  CAS  PubMed  Google Scholar 

  • Xiao WH, Zhang YP, Liu HZ (2001) Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol Phylogene Evol 18(2):163–173

    Article  CAS  Google Scholar 

  • Yin J, Zhao ZS, Chen XQ, Li YQ, Zhu LY (2005).Karyotype comparison of diploid and tetraploid loach. Acta Hydrobiol Sin 29(4):469–472 (in Chinese with English abstract)

    Google Scholar 

  • Zhang Q, Arai K (1999) Distribution and reproductive capacity of natural triploid individuals and occurrence of unreduced eggs as a cause of polyploidization in the loach, Misgurnus anguillicaudatus. Ichthyol Res 46:153–161

    Article  Google Scholar 

  • Zhang YP, Ryder OA (1997) Molecular phylogeny of the superfamily arctoidea. Acta Genet Sin 24(1):15–22 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zheng L, Liu CW, Li CL (2005) Studies on the karyotype of 4 groupers. Mar Sci 29(4):51–55 (in Chinese with English abstract)

    Google Scholar 

  • Zhou JL, Zhang YP, Huang MH (2001) Phylogenetic relationships among crotalinae based on mitochondrial cytochrome b gene sequence variations. Acta Zool Sin 47(4):361–366 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgement

This research is a component of the Aquaculture Collaborative Research Support Program (ACRSP), supported by the US Agency for International Development Grant, and by contributions from University of Michigan, Asian Institute of Technology, and Huazhong Agricultural University. The accession number is 1329. The opinions expressed herein are those of the authors and do not necessarily reflect the views of the US Agency for International Development. This study is also funded by “National Key Technology R&D Program in Eleventh-Five-Year Plan” titled as “The integrated demonstration of safe fishery production”. The accession number is 2006BAK02A22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Cao, L., Wang, W. et al. Comparative and evolutionary analysis in natural diploid and tetraploid weather loach Misgurnus anguillicaudatus based on cytochrome b sequence data in central China. Environ Biol Fish 86, 145–153 (2009). https://doi.org/10.1007/s10641-007-9283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-007-9283-9

Keywords

Navigation