Skip to main content

Advertisement

Log in

Ethoxyfagaronine, a synthetic analogue of fagaronine that inhibits vascular endothelial growth factor-1, as a new anti-angiogeneic agent

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Angiogenesis plays a pivotal role in tumorigenesis and also contributes to the pathogenesis of hematologic malignancies. A number of plant compounds have shown efficacy in preclinical and clinical studies and some of them possess an anti-angiogenic activity. Our present findings report anti-angiogenic activities of ethoxyfagaronine (etxfag), a synthetic derivative of fagaronine. Once determined the non-cytotoxic concentration of etxfag, we showed that the drug inhibits VEGF-induced angiogenesis in a Matrigel™ plug assay and suppresses ex vivo sprouting from VEGF-treated aortic rings. Each feature leading to neovascularization was then investigated and results demonstrate that etxfag prevents VEGF-induced migration and tube formation in human umbilical vein endothelial cells (HUVEC). Moreover, etxfag also suppresses VEGF-induced VEGFR-2 phosphorylation and inhibits FAK phosphorylation at Y-861 as well as focal adhesion complex turnover. Beside these effects, etxfag modifies MT1-MMP localization at the endothelial cell membrane. Finally, immunoprecipitation assay revealed that etxfag decreases VEGF binding to VEGFR-2. As we previously reported that etxfag is able to prevent leukemic cell invasiveness and adhesion to fibronectin, all together our data collectively support the anti-angiogenic activities of etxfag which could represent an additional approach to current anti-cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9:225–230, discussion 31

    Article  CAS  PubMed  Google Scholar 

  2. Shibuya M (2014) VEGF-VEGFR signals in health and disease. Biomol Ther (Seoul) 22:1–9

    Article  CAS  Google Scholar 

  3. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28:488–494

    Article  CAS  PubMed  Google Scholar 

  4. Kampen KR, Ter Elst A, de Bont ES (2013) Vascular endothelial growth factor signaling in acute myeloid leukemia. Cell Mol Life Sci 70:1307–1317

    Article  CAS  PubMed  Google Scholar 

  5. Podar K, Anderson KC (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 105:1383–1395

    Article  CAS  PubMed  Google Scholar 

  6. Podar K, Anderson KC (2010) A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle 9:1722–1728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Medinger M, Mross K (2010) Clinical trials with anti-angiogenic agents in hematological malignancies. J Angiogenes Res 2:10

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lucas DM, Still PC, Perez LB, Grever MR, Kinghorn AD (2010) Potential of plant-derived natural products in the treatment of leukemia and lymphoma. Curr Drug Targets 11:812–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Basini G, Bussolati S, Santini SE, Grasselli F (2009) Stanniocalcin, a potential ovarian angiogenesis regulator, does not affect endothelial cell apoptosis. Ann N Y Acad Sci 1171:94–99

    Article  CAS  PubMed  Google Scholar 

  10. Eun JP, Koh GY (2004) Suppression of angiogenesis by the plant alkaloid, sanguinarine. Biochem Biophys Res Commun 317:618–624

    Article  CAS  PubMed  Google Scholar 

  11. De Stefano I, Raspaglio G, Zannoni GF, Travaglia D, Prisco MG, Mosca M et al (2009) Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem Pharmacol 78:1374–1381

    Article  PubMed  Google Scholar 

  12. Messmer WM, Tin-Wa M, Fong HH, Bevelle C, Farnsworth NR, Abraham DJ et al (1972) Fagaronine, a new tumor inhibitor isolated from Fagara zanthoxyloides Lam. (Rutaceae). J Pharm Sci 61:1858–1859

    Article  CAS  PubMed  Google Scholar 

  13. Comoe L, Jeannesson P, Trentesaux C, Desoize B, Jardillier JC (1987) The antileukemic alkaloid fagaronine and the human K 562 leukemic cells: effects on growth and induction of erythroid differentiation. Leuk Res 11:445–451

    Article  CAS  PubMed  Google Scholar 

  14. Stermitz FR, Larson KA, Kim DK (1973) Some structural relationships among cytotoxic and antitumor benzophenanthridine alkaloid derivatives. J Med Chem 16:939–940

    Article  CAS  PubMed  Google Scholar 

  15. Lynch MA, Duval O, Sukhanova A, Devy J, MacKay SP, Waigh RD et al (2001) Synthesis, biological activity and comparative analysis of DNA binding affinities and human DNA topoisomerase I inhibitory activities of novel 12-alkoxy-benzo[c]phenanthridinium salts. Bioorg Med Chem Lett 11:2643–2646

    Article  CAS  PubMed  Google Scholar 

  16. Deroussent A, Re M, Hoellinger H, Vanquelef E, Duval O, Sonnier M et al (2004) In vitro metabolism of ethoxidine by human CYP1A1 and rat microsomes: identification of metabolites by high-performance liquid chromatography combined with electrospray tandem mass spectrometry and accurate mass measurements by time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:474–482

    Article  CAS  PubMed  Google Scholar 

  17. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ et al (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102:1555–1577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ouchani F, Devy J, Rusciani A, Helesbeux JJ, Salesse S, Letinois I et al (2012) Targeting focal adhesion assembly by ethoxyfagaronine prevents lymphoblastic cell adhesion to fibronectin. Anal Cell Pathol 35:267–284

    Article  CAS  Google Scholar 

  19. Abu-Ghazaleh R, Kabir J, Jia H, Lobo M, Zachary I (2001) Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and anti-apoptosis in endothelial cells. Biochem J 360:255–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Galvez BG, Matias-Roman S, Albar JP, Sanchez-Madrid F, Arroyo AG (2001) Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J Biol Chem 276:37491–37500

    Article  CAS  PubMed  Google Scholar 

  21. Medinger M, Fischer N, Tzankov A (2010) Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. J Oncol 2010:729725

    Article  PubMed Central  PubMed  Google Scholar 

  22. Sallam TH, El Telbany MA, Mahmoud HM, Iskander MA (2013) Significance of neuropilin-1 expression in acute myeloid leukemia. Turk J Haematol 30:300–306

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ma J, Waxman DJ (2008) Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther 7:3670–3684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Thevenard J, Ramont L, Devy J, Brassart B, Dupont-Deshorgue A, Floquet N et al (2010) The YSNSG cyclopeptide derived from tumstatin inhibits tumor angiogenesis by down-regulating endothelial cell migration. Int J Cancer J Int Du Cancer 126:1055–1066

    CAS  Google Scholar 

  25. Genis L, Galvez BG, Gonzalo P, Arroyo AG (2006) MT1-MMP: universal or particular player in angiogenesis? Cancer Metastasis Rev 25:77–86

    Article  PubMed  Google Scholar 

  26. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    Article  CAS  PubMed  Google Scholar 

  27. Parat MO, Anand-Apte B, Fox PL (2003) Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Mol Biol Cell 14:3156–3168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tahir SA, Park S, Thompson TC (2009) Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther 8:2286–2296

    Article  PubMed Central  PubMed  Google Scholar 

  29. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  30. Devy J, Ouchani F, Oudot C, Helesbeux JJ, Vanquelef E, Salesse S, et al (2010). The anti-invasive activity of synthetic alkaloid ethoxyfagaronine on L1210 leukemia cells is mediated by down-regulation of plasminogen activators and MT1-MMP expression and activity. Invest New Drugs

Download references

Acknowledgments

Plateforme IBiSA PICT “Imagerie Cellulaire et Tissulaire” This work was supported by grants from CNRS and Ligue Contre le Cancer Grand Est. We would like to thank J.L. Breda for animal care. The authors acknowledge Dr Laetitia Devy Dimanche for editorial assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Devy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouchani, F., Jeanne, A., Thevenard, J. et al. Ethoxyfagaronine, a synthetic analogue of fagaronine that inhibits vascular endothelial growth factor-1, as a new anti-angiogeneic agent. Invest New Drugs 33, 75–85 (2015). https://doi.org/10.1007/s10637-014-0184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0184-4

Keywords

Navigation