Skip to main content

Advertisement

Log in

A phase I study of prolonged infusion of triapine in combination with fixed dose rate gemcitabine in patients with advanced solid tumors

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose Prolonged exposure of cancer cells to triapine, an inhibitor of ribonucleotide reductase, followed by gemcitabine enhances gemcitabine activity in vitro. Fixed-dose-rate gemcitabine (FDR-G) has improved efficacy compared to standard-dose. We conducted a phase I trial to determine the maximum tolerated dose (MTD), safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of prolonged triapine infusion followed by FDR-G. Experimental Design Triapine was given as a 24-hour infusion, immediately followed by FDR-G (1000 mg/m2 over 100-minute). Initially, this combination was administered days 1 and 8 of a 21-day cycle (Arm A, triapine starting dose 120 mg); but because of myelosuppression, it was changed to days 1 and 15 of a 28-day cycle (Arm B, starting dose of triapine 75 mg). Triapine steady-state concentrations (Css) and circulating ribonucleotide reductase M2-subunit (RRM2) were measured. Results Thirty-six patients were enrolled. The MTD was determined to be triapine 90 mg (24-hour infusion) immediately followed by gemcitabine 1000 mg/m2 (100-minute infusion), every 2 weeks of a 4-week cycle. DLTs included grade 4 thrombocytopenia, leukopenia and neutropenia. The treatment was well tolerated with fatigue, nausea/vomiting, fever, transaminitis, and cytopenias being the most common toxicities. Among 30 evaluable patients, 1 had a partial response and 15 had stable disease. Triapine PK was similar, although more variable, compared to previous studies using doses normalized to body-surface-area. Steady decline in circulating levels of RRM2 may correlate with outcome. Conclusions This combination was well tolerated and showed evidence of preliminary activity in this heavily pretreated patient population, including prior gemcitabine failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bokemeyer C et al (1999) Gemcitabine in patients with relapsed or cisplatin-refractory testicular cancer. J Clin Oncol 17(2):512–516

    PubMed  CAS  Google Scholar 

  2. Burris HA 3rd et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413

    PubMed  CAS  Google Scholar 

  3. Cardenal F et al (1999) Randomized phase III study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment of locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 17(1):12–18

    PubMed  CAS  Google Scholar 

  4. Heinemann V (2003) Role of gemcitabine in the treatment of advanced and metastatic breast cancer. Oncology 64(3):191–206

    Article  PubMed  CAS  Google Scholar 

  5. Markman M (2002) Second-line treatment of ovarian cancer with single-agent gemcitabine. Semin Oncol 29(1 Suppl 1):9–10

    Article  PubMed  CAS  Google Scholar 

  6. Scheithauer W (2002) Review of gemcitabine in biliary tract carcinoma. Semin Oncol 29(6 Suppl 20):40–45

    PubMed  CAS  Google Scholar 

  7. von der Maase H (2003) Gemcitabine in transitional cell carcinoma of the urothelium. Expert Rev Anticancer Ther 3(1):11–19

    Article  PubMed  Google Scholar 

  8. Bjorklund S et al (1990) S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry 29(23):5452–5458

    Article  PubMed  CAS  Google Scholar 

  9. Cory JG et al (1994) Inhibitors of ribonucleotide reductase. Comparative effects of amino- and hydroxy-substituted pyridine-2-carboxaldehyde thiosemicarbazones. Biochem Pharmacol 48(2):335–344

    Article  PubMed  CAS  Google Scholar 

  10. Duxbury MS et al (2004) RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene 23(8):1539–1548

    Article  PubMed  CAS  Google Scholar 

  11. Jung CP, Motwani MV, Schwartz GK (2001) Flavopiridol increases sensitization to gemcitabine in human gastrointestinal cancer cell lines and correlates with down-regulation of ribonucleotide reductase M2 subunit. Clin Cancer Res 7(8):2527–2536

    PubMed  CAS  Google Scholar 

  12. Heinemann V et al (1990) Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′-difluorodeoxycytidine. Mol Pharmacol 38(4):567–572

    PubMed  CAS  Google Scholar 

  13. Gandhi V et al (2002) Prolonged infusion of gemcitabine: Clinical and pharmacodynamic studies during a phase I trial in relapsed acute myelogenous leukemia. J Clin Oncol 20(3):665–673

    Article  PubMed  CAS  Google Scholar 

  14. Grunewald R et al (1992) Gemcitabine in leukemia: A phase I clinical, plasma, and cellular pharmacology study. J Clin Oncol 10(3):406–413

    PubMed  CAS  Google Scholar 

  15. Tempero M et al (2003) Randomized phase II comparison of dose-intense gemcitabine: Thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. J Clin Oncol 21(18):3402–3408

    Article  PubMed  CAS  Google Scholar 

  16. Poplin E et al (2009) Phase III, randomized study of gemcitabine and oxaliplatin versus gemcitabine (fixed-dose rate infusion) compared with gemcitabine (30-minute infusion) in patients with pancreatic carcinoma E6201: A trial of the eastern cooperative oncology group. J Clin Oncol 27(23):3778–3785

    Article  PubMed  CAS  Google Scholar 

  17. Elford HL et al (1970) Ribonucleotide reductase and cell proliferation. I. Variations of ribonucleotide reductase activity with tumor growth rate in a series of rat hepatomas. J Biol Chem 245(20):5228–5233

    PubMed  CAS  Google Scholar 

  18. Bergman AM, Pinedo HM, Peters GJ (2002) Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updat 5(1):19–33

    Article  PubMed  CAS  Google Scholar 

  19. Goan YG et al (1999) Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in the human KB cancer cell line. Cancer Res 59(17):4204–4207

    PubMed  CAS  Google Scholar 

  20. Gandhi V et al (1992) Fludarabine infusion potentiates arabinosylcytosine metabolism in lymphocytes of patients with chronic lymphocytic leukemia. Cancer Res 52(4):897–903

    PubMed  CAS  Google Scholar 

  21. Iwasaki H et al (1997) Differential incorporation of ara-C, gemcitabine, and fludarabine into replicating and repairing DNA in proliferating human leukemia cells. Blood 90(1):270–278

    PubMed  CAS  Google Scholar 

  22. Kubota M et al (1988) Differential modulation of 1-beta-D-arabinofuranosylcytosine metabolism by hydroxyurea in human leukemic cell lines. Biochem Pharmacol 37(9):1745–1749

    Article  PubMed  CAS  Google Scholar 

  23. Walsh CT, Craig RW, Agarwal RP (1980) Increased activation of 1-beta-D-arabinofuranosylcytosine by hydroxyurea in L1210 cells. Cancer Res 40(9):3286–3292

    PubMed  CAS  Google Scholar 

  24. Zhou B et al (2002) Time and sequence dependence of hydroxyurea in combination with gemcitabine in human KB cells. Anticancer Res 22(3):1369–1377

    PubMed  CAS  Google Scholar 

  25. Moore EC, Booth BA, Sartorelli AC (1971) Inhibition of deoxyribonucleotide synthesis by pyridine carboxaldehyde thiosemicarbazones. Cancer Res 31(3):235–238

    PubMed  CAS  Google Scholar 

  26. Finch RA et al (2000) Triapine (3-aminopyridine-2-carboxaldehyde- thiosemicarbazone): A potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem Pharmacol 59(8):983–991

    Article  PubMed  CAS  Google Scholar 

  27. Zhu L et al (2009) Inhibitory mechanisms of heterocyclic carboxaldehyde thiosemicabazones for two forms of human ribonucleotide reductase. Biochem Pharmacol 78(9):1178–1185

    Article  PubMed  CAS  Google Scholar 

  28. Chen C.-H, King I, and Belcourt M (2002) Triapine, a ribonucleotide reductase inhibitor, enhances incorporation of gemcitabine into DNA and cytotoxicity to KB cells. European journal of cancer (Oxford, England : 1990), 38: S26.

  29. Feun L et al (2002) Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule. Cancer Chemother Pharmacol 50(3):223–229

    Article  PubMed  CAS  Google Scholar 

  30. Murren J et al (2003) Phase I and pharmacokinetic study of triapine, a potent ribonucleotide reductase inhibitor, administered daily for 5 days in patients with advanced solid tumors. Clin Cancer Res 9(11):4092–4100

    PubMed  CAS  Google Scholar 

  31. Wadler S et al (2004) Phase I and pharmacokinetic study of the ribonucleotide reductase inhibitor, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, administered by 96-hour intravenous continuous infusion. J Clin Oncol 22(9):1553–1563

    Article  PubMed  CAS  Google Scholar 

  32. Yen Y et al (2004) A phase I trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone in combination with gemcitabine for patients with advanced cancer. Cancer Chemother Pharmacol 54(4):331–342

    Article  PubMed  CAS  Google Scholar 

  33. Therasse P et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of canada. J Natl Cancer Inst 92(3):205–216

    Article  PubMed  CAS  Google Scholar 

  34. Birch N, Wang X, Chong H-S (2006) Iron chelators as therapeutic iron depletion agents. Expert Opinion on Therapeutic Patents 16(11):1533–1556

    Article  CAS  Google Scholar 

  35. Shao J et al (2006) A Ferrous-Triapine complex mediates formation of reactive oxygen species that inactivate human ribonucleotide reductase. Mol Cancer Ther 5(3):586–592

    Article  PubMed  CAS  Google Scholar 

  36. US Food and Drug Administration Center for Drug Evaluation and Research (CDER) and Center for Veterinary Medicine (CVM), Guidance for Industry on Bioanalytical Method Validation, 2001.

  37. Zhou B et al (2006) Production of a monoclonal antibody against the hRRM2 subunit of ribonucleotide reductase and immunohistochemistry study of human cancer tissues. Hybridoma (Larchmt) 25(5):264–270

    Article  CAS  Google Scholar 

  38. Ko AH et al (2006) Phase II study of fixed dose rate gemcitabine with cisplatin for metastatic adenocarcinoma of the pancreas. J Clin Oncol 24(3):379–385

    Article  PubMed  CAS  Google Scholar 

  39. Lopes G et al (2007) Oxaliplatin and fixed-rate infusional gemcitabine in the second-line treatment of patients with metastatic colon cancer: Final results of a phase II trial prematurely closed as a result of poor accrual. Clin Colorectal Cancer 6(9):641–645

    Article  PubMed  CAS  Google Scholar 

  40. Louvet C et al (2005) Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer: Results of a GERCOR and GISCAD phase III trial. J Clin Oncol 23(15):3509–3516

    Article  PubMed  CAS  Google Scholar 

  41. Nutting CM et al (2009) Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann Oncol 20(7):1275–1279

    Article  PubMed  CAS  Google Scholar 

  42. Mackenzie MJ et al (2007) A Phase II study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) and gemcitabine in advanced pancreatic carcinoma. A trial of the Princess Margaret hospital Phase II consortium. Invest New Drugs 25(6):553–558

    Article  PubMed  CAS  Google Scholar 

  43. Traynor AM et al (2010) A phase II trial of triapine (NSC# 663249) and gemcitabine as second line treatment of advanced non-small cell lung cancer: Eastern cooperative oncology group study 1503. Invest New Drugs 28(1):91–97

    Article  PubMed  CAS  Google Scholar 

  44. Ma B et al (2008) A multicenter phase II trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells. Invest New Drugs 26(2):169–173

    Article  PubMed  CAS  Google Scholar 

  45. Ocean AJ et al (2011) Phase II trial of the ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehydethiosemicarbazone plus gemcitabine in patients with advanced biliary tract cancer. Cancer Chemother Pharmacol 68(2):379–388

    Article  PubMed  CAS  Google Scholar 

  46. Giles FJ et al (2003) Phase I and pharmacodynamic study of Triapine, a novel ribonucleotide reductase inhibitor, in patients with advanced leukemia. Leuk Res 27(12):1077–1083

    Article  PubMed  CAS  Google Scholar 

  47. Kolesar J et al (2011) Population pharmacokinetics of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine(R)) in cancer patients. Cancer Chemother Pharmacol 67(2):393–400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the patients who participated in this trial, as well as the Clinical Trials Office personnel, James Cancer Hospital inpatient nurses and enrolling physicians, for their help in completion of this study. This study was supported by the National Institutes of Health, National Cancer Institute, Bethesda, U.S.A. (NCI Protocol # 7043).

Grant Support

This study was supported by the U01 Grant through National Institutes of Health (Grant # U01 CA076576).

Disclosure of Potential Conflict of Interest

There are no potential conflicts of interest among the authors of this article. This article has been seen, read, and agreed on in its content by all designated authors. This article has not been submitted or published elsewhere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanios Bekaii-Saab.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1S

Response to treatment (DOC 73 kb)

Table 2S

Summary of changes in hRRM2a expression (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortazavi, A., Ling, Y., Martin, L.K. et al. A phase I study of prolonged infusion of triapine in combination with fixed dose rate gemcitabine in patients with advanced solid tumors. Invest New Drugs 31, 685–695 (2013). https://doi.org/10.1007/s10637-012-9863-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-012-9863-1

Keywords

Navigation