Skip to main content

Advertisement

Log in

Cell death induced by novel fluorinated taxanes in drug-sensitive and drug-resistant cancer cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The aim of this study is to compare the effects of new fluorinated taxanes SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 with those of the classical taxane paclitaxel and novel non-fluorinated taxane SB-T-1216 on cancer cells. Paclitaxel-sensitive MDA-MB-435 and paclitaxel-resistant NCI/ADR-RES human cancer cell lines were used. Cell growth and survival evaluation, colorimetric assessment of caspases activities, flow cytometric analyses of the cell cycle and the assessment of mitochondrial membrane potential, reactive oxygen species (ROS) and the release of cytochrome c from mitochondria were employed. Fluorinated taxanes have similar effects on cell growth and survival. For MDA-MB-435 cells, the C50 of SB-T-12851, SB-T-12852, SB-T-12853 and SB-T-12854 was 3 nM, 4 nM, 3 nM and 5 nM, respectively. For NCI/ADR-RES cells, the C50 of SB-T-12851, SB-T-12852, SB-T-12853, and SB-T-12854 was 20 nM, 20 nM, 10 nM and 10 nM, respectively. Selected fluorinated taxanes, SB-T-12853 and SB-T-12854, at the death-inducing concentrations (30 nM for MDA-MB-435 and 300 nM for NCI/ADR-RES) were shown to activate significantly caspase-3, caspase-9, caspase-2 and also slightly caspase-8. Cell death was associated with significant accumulation of cells in the G2/M phase. Cytochrome c was not released from mitochondria and other mitochondrial functions were not significantly impaired. The new fluorinated taxanes appear to use the same or similar mechanisms of cell death induction as compared with SB-T-1216 and paclitaxel. New fluorinated and non-fluorinated taxanes are more effective against drug-resistant cancer cells than paclitaxel. Therefore, new generation of taxanes, either non-fluorinated or fluorinated, are excellent candidates for further and detailed studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Galletti E, Magnani M, Renzulli ML, Botta M (2007) Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. Chem Med Chem 2:920–942. doi:10.1002/cmdc.200600308

    PubMed  CAS  Google Scholar 

  2. Choy H (2001) Taxanes in combined modality therapy for solid tumors. Crit Rev Oncol Hematol 37:237–247. doi:10.1016/S1040-8428(00)00112-8

    Article  PubMed  CAS  Google Scholar 

  3. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327

    Article  PubMed  CAS  Google Scholar 

  4. Ferlini C, Ojima I, Distefano M, Gallo D, Riva A, Morazzoni P, Bombardelli E, Mancuso S, Scambia G (2003) Second generation taxanes: from the natural framework to the challenge of drug resistance. Curr Med Chem—Anti-Cancer Agents 3:133–138. doi:10.2174/1568011033353489

    Article  CAS  Google Scholar 

  5. Chien AJ, Moasser MM (2008) Cellular resistance to antracyclines and taxanes in cancer: intrinsic and acquired. Semin Oncol 35:S1–S14. doi:10.1053/j.seminoncol.2008.02.010

    Article  PubMed  CAS  Google Scholar 

  6. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB (2003) Mechanisms of taxol resistance related to microtubules. Oncogene 22:7280–7295. doi:10.1038/sj.onc.1206934

    Article  PubMed  CAS  Google Scholar 

  7. Tuszynski JA, Trpišová B, Sept D, Brown JA (1997) Selected physical issues in the structure and function of microtubules. J Struct Biol 118:94–106. doi:10.1006/jsbi.1997.3843

    Article  PubMed  CAS  Google Scholar 

  8. Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, Horwitz SB, Orr GA (2006) Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci USA 103:10166–10173. doi:10.1073/pnas.0603704103

    Article  PubMed  CAS  Google Scholar 

  9. Schiff PB, Horwitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 20:3247–3252

    Article  PubMed  CAS  Google Scholar 

  10. Jordan MA, Ojima I, Rosas F, Distefano M, Wilson L, Scambia G, Ferlini C (2002) Effects of novel taxanes SB-T-1213 and IDN5109 on tubulin polymerization and mitosis. Chem Biol 9:93–101. doi:10.1016/S1074-5521(01)00097-7

    Article  PubMed  CAS  Google Scholar 

  11. Sackett D, Fojo T (1997) Taxanes. Cancer Chemother Biol Response Modif 17:59–79

    PubMed  CAS  Google Scholar 

  12. Aoudjit F, Vuori K (2001) Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 20:4995–5004. doi:10.1038/sj.onc.1204554

    Article  PubMed  CAS  Google Scholar 

  13. Ehrlichová M, Koc M, Truksa J, Naďová Z, Václavíková R, Kovář J (2005) Cell death induced by taxanes in breast cancer cells: cytochrome c is released in resistant but not in sensitive cells. Anticancer Res 25:4215–4224

    PubMed  Google Scholar 

  14. Fan W (1999) Possible mechanisms of paclitaxel-induced apoptosis. Biochem Pharmacol 57:1215–1221. doi:10.1016/S0006-2952(99)00006-4

    Article  PubMed  CAS  Google Scholar 

  15. Bhalla KN (2003) Microtubule-targeted anticancer agents and apoptosis. Oncogene 22:9075–9085. doi:10.1038/sj.onc.1207233

    Article  PubMed  CAS  Google Scholar 

  16. Liao PC, Tan SK, Lieu CH, Jung HK (2008) Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J Cell Biochem 104:1509–1523. doi:10.1002/jeb.21730

    Article  PubMed  CAS  Google Scholar 

  17. Mhaidat NM, Wang Y, Kiejda KA, Zhang XD, Hersey P (2007) Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol Cancer Ther 6:752–761. doi:10.1158/1535-7163.MCT-06-0564

    Article  PubMed  CAS  Google Scholar 

  18. Shi J, Orth JD, Mitchison T (2008) Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res 68:3269–3276. doi:10.1158/0008-5472.CAN-07-6699

    Article  PubMed  CAS  Google Scholar 

  19. Fowler CA, Perks CM, Newcomb PV, Savage PB, Farndon JR, Holly JM (2000) Insulin-like growth factor binding protein-3 (IGFBP-3) potentiates paclitaxel-induced apoptosis in human breast cancer cells. Int J Cancer 88:448–453. doi:10.1002/1097-0215(20001101)88:3<448::AID-IJC18>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  20. Friedrich K, Wieder T, Von Haefen C, Radetzki S, Janicke R, Schulze-Osthoff K, Dorken B, Daniel PT (2001) Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance. Oncogene 20:2749–2760. doi:10.1038/sj.onc.1204342

    Article  PubMed  CAS  Google Scholar 

  21. Kottke TJ, Blajevski AL, Martins LM, Mesner PW Jr, Davidson NE, Earnshaw WC, Armstrong DK, Kaufmann SH (1999) Comparison of paclitaxel-, 5-fluoro-2′-deoxyuridine-, and epidermal growth factor (EGF)-induced apoptosis. Evidence for EGF-induced anokis. J Biol Chem 274:15927–15936. doi:10.1074/jbc.274.22.15927

    Article  PubMed  CAS  Google Scholar 

  22. Razandi M, Pedram A, Levin ER (2000) Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol Endocrinol 14:1434–1447

    Article  PubMed  CAS  Google Scholar 

  23. Ofir R, Seidman R, Rabinski T, Krup M, Yavelsky V, Weinstein Y, Wolfson M (2002) Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ 9:636–642. doi:10.1038/sj/cdd/4401012

    Article  PubMed  CAS  Google Scholar 

  24. Von Haefen C, Wiedr T, Essmann F, Schulze-Osthoff K, Dörken B, Daniel PT (2003) Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 22:2236–2247. doi:10.1038/sj.onc.1206280

    Article  Google Scholar 

  25. Park SJ, Wu CH, Gordon JD, Zhong X, Emami A, Safa AR (2004) Taxol induces caspase-10-dependent apoptosis. J Biol Chem 279:51057–51067. doi:10.1074/jbc.M406543200

    Article  PubMed  CAS  Google Scholar 

  26. Mekhail TM, Markman M (2002) Paclitaxel in cancer therapy. Expert Opin Pharmacother 3:755–766. doi:10.1517/14656566.3.6.755

    Article  PubMed  CAS  Google Scholar 

  27. Rowinsky EK (1997) Paclitaxel pharmacology and other tumor types. Semin Oncol 24:1–12

    CAS  Google Scholar 

  28. Ojima I, Slater JC, Michaud E, Kuduk SD, Bounaud PY, Vrignaud P, Bissery MC, Veith JM, Pera P, Bernacki RJ (1996) Syntheses and structure-activity relationships of the second-generation antitumor taxoids: exceptional activity against drug-resistant cancer cells. J Med Chem 39:3889–3896. doi:10.1021/jm9604080

    Article  PubMed  CAS  Google Scholar 

  29. Pepe A, Kuznetsova L, Sun L, Ojima I (2009) Fluoro-taxoid anticancer agents. In: Ojima I (ed) Fluorine in medical chemistry and chemical biology, 1st edn. Wiley-Blackwell, Chichester, pp 117–139

    Chapter  Google Scholar 

  30. Ehrlichová M, Václavíková R, Ojima I, Pepe A, Kuznetsova LV, Chen J, Truksa J, Kovář J, Gut I (2005) Transport and cytotoxicity of paclitaxel, docetaxel, and novel taxanes in human breast cancer cells. N-S Arch Pharmacol 372:95–105. doi:10.1007/s00210-005-1080-4

    Article  Google Scholar 

  31. Kovář J, Ehrlichová M, Šmejkalová B, Zanardi I, Ojima I (2009) Comparison of cell death-inducing effect of novel taxane SB-T-1216 and paclitaxel in breast cancer cells. Anticancer Res 29:2951–2960

    PubMed  Google Scholar 

  32. Musílková J, Kovář J (2001) Additive stimulatory effect of extracellular calcium and potassium on non-transferrin ferric iron uptake by HeLa and K562 cells. Biochim Biophys Acta 1514:117–126. doi:10.1016/S0005-2736(01)00367-4

    Article  PubMed  Google Scholar 

  33. Kovář J, Valenta T, Štýbrová H (2001) Differing sensitivity of tumor cells to apoptosis induced by iron deprivation in vitro. In Vitro Cell Dev Biol Anim 37:450–458. doi:10.1290/1071-2690(2001)037<0450:DSOTCT>2.0.CO;2

    Article  PubMed  Google Scholar 

  34. Koc M, Nad’ová Z, Truksa J, Ehrlichová M, Kovář J (2005) Iron deprivation induces apoptosis via mitochondrial changes related to Bax translocation. Apoptosis 10:381–393. doi:10.1007/s10495-005-0812-8

    Article  PubMed  CAS  Google Scholar 

  35. Castedo M, Ferri K, Roumier T, Metivier D, Zamzami N, Kroemer G (2002) Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods 265:39–47. doi:10.1016/S0022-1759(02)00069-8

    Article  PubMed  CAS  Google Scholar 

  36. Ellison G, Klinowska T, Westwood RFR, Docter R, French T, Fox JC (2002) Further evidence to support the melanocytic origin of MDA-MB-435. J Clin Pathol: Mol Pathol 55:294–299. doi:10.1136/mp.55.5.294

    Article  CAS  Google Scholar 

  37. Wang H, Juany S, Shou J, Su EW, Onyia JE, Liao B, Li S (2006) Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data. BMC Genomics 7:166. doi:10.1186/1471-2164-7-166

    Article  PubMed  Google Scholar 

  38. Alexandre J, Hu Y, Lu W, Pelicano H, Huang P (2007) Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res 67:3512–3517. doi:10.1158/0008-5472.CAN-06-3914

    Article  PubMed  CAS  Google Scholar 

  39. Lassus P, Optiz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354. doi:10.1126/science.1074721

    Article  PubMed  CAS  Google Scholar 

  40. Zhivotovsky B, Orrenius S (2005) Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 331:859–867. doi:10.1016/j.bbrc.2005.03.191

    Article  PubMed  CAS  Google Scholar 

  41. Wang YF, Chen CY, Chung SF, Chiou YH, Lo HR (2004) Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells. Cancer Chemother Pharmacol 54:322–330. doi:10.1007/s00280-004-0831-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant NR9426-3/2007 from the Internal Grant Agency, Ministry of Health of the Czech Republic (to I.G.), grant 301/09/0362 from the Grant Agency of the Czech Republic (to J.K.), and grant CA103314 from the National Cancer Institute of the National Institute of Health, USA (to I.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kovář.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vobořilová, J., Němcová-Fürstová, V., Neubauerová, J. et al. Cell death induced by novel fluorinated taxanes in drug-sensitive and drug-resistant cancer cells. Invest New Drugs 29, 411–423 (2011). https://doi.org/10.1007/s10637-009-9368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9368-8

Keywords

Navigation