Skip to main content

Advertisement

Log in

Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Paclitaxel has significant antitumor activity in several human tumors, including Kaposi’s sarcoma (KS). Human herpesvirus 8 (HHV-8) is implicated in all forms of Kaposi’s sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD), indicating that it is a DNA tumor virus. Since it is difficult to culture cell lines derived from KS patients, we used a cell line derived from PEL (BCBL-1) to investigate whether oxidative stress is involved in the cytotoxicity of paclitaxel on the HHV-8-related tumors. We found that the generation of reactive oxygen species (ROS) in the BCBL-1 cells was increased by paclitaxel treatment, and the increase in ROS production was suppressed by antioxidants, including catalase and ascorbic acid. Moreover, ascorbic acid also attenuated the cytotoxicity induced by paclitaxel. Upon paclitaxel treatment, caspase-2, caspase-3, and caspase-8 were activated in BCBL-1 cells. Cotreatment with antioxidants did not affect caspase-2, caspase-3 or caspase-8 activation. Paclitaxel-induced apoptosis was also accompanied by an increase in the protein levels of Bax, and this effect was attenuated by antioxidants. Paclitaxel slightly decreased the expression of Bcl-2 protein, but antioxidants induced Bcl-2 protein. These results suggest that oxidative stress is only partially involved in the cytotoxicity of paclitaxel in BCBL-1 cells, and that paclitaxel-induced apoptosis of BCBL-1 cells is primarily mediated by the caspase activation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andre N, Braguer D, Brasseur G, Goncalves A, Lemesle-Meunier D, Guise S, Jordan MA, Briand C (2000) Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 60:5349–5353

    CAS  PubMed  Google Scholar 

  2. Boshoff C, Whitby D, Hatziioannou T, Fisher C, van der Walt J, Hatzakis A, Weiss R, Schulz T (1995) Kaposi’s-sarcoma-associated herpesvirus in HIV-negative Kaposi’s sarcoma. Lancet 345:1043–1044

    CAS  Google Scholar 

  3. Cattelan AM, Trevenzoli M, Aversa SM (2002) Recent advances in the treatment of AIDS-related Kaposi’s sarcoma. Am J Clin Dermatol 3:451–462

    PubMed  Google Scholar 

  4. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191

    Google Scholar 

  5. Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29:323–333

    Article  CAS  PubMed  Google Scholar 

  6. Debatin KM, Poncet D, Kroemer G (2002) Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21:8786–8803

    Article  CAS  PubMed  Google Scholar 

  7. Dupin N, Grandadam M, Calvez V, Gorin I, Aubin JT, Havard S, Lamy F, Leibowitch M, Huraux JM, Escande JP, Agut H (1995) Herpesvirus-like DNA sequences in patients with Mediterranean Kaposi’s sarcoma. Lancet 345:761–762

    Article  CAS  PubMed  Google Scholar 

  8. Frenkel K, Gleichauf C (1991) Hydrogen peroxide formation by cells treated with a tumor promoter. Free Radic Res Commun 12–13:783–794

    Google Scholar 

  9. Goncalves A, Braguer D, Kamath K, Martello L, Braind C, Horwitz S, Wilson L, Jordan MA (2001) Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc Natl Acad Sci U S A 98:11737–11742

    Article  CAS  PubMed  Google Scholar 

  10. Groninger E, Meeuwsen-De Boer GJ, De Graaf SS, Kamps WA, De Bont ES (2002) Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species? Int J Oncol 21:1339–1345

    CAS  PubMed  Google Scholar 

  11. Haendeler J, Zeiher AM, Dimmeler S (1996) Vitamin C and E prevent lipopolysaccharide-induced apoptosis in human endothelial cells by modulation of Bcl-2 and Bax. Eur J Pharmacol 317:407–411

    Article  CAS  PubMed  Google Scholar 

  12. Horwitz SB (1992) Mechanism of action of taxol. Trends Pharmacol Sci 13:134–136

    Article  CAS  PubMed  Google Scholar 

  13. Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L (1996) Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 56:816–825

    CAS  PubMed  Google Scholar 

  14. Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T (2002) Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Cancer Chemother Pharmacol 50:343–352

    Article  CAS  PubMed  Google Scholar 

  15. Kumar N (1981) Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem 256:10435–10441

    CAS  PubMed  Google Scholar 

  16. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    CAS  PubMed  Google Scholar 

  17. Liebmann JE, Cook JA, Lipschultz C, Teague D, Fisher J, Mitchell JB (1993) Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br J Cancer 68:1104–1109

    CAS  PubMed  Google Scholar 

  18. Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495

    Article  CAS  PubMed  Google Scholar 

  19. McCloskey DE, Kaufmann SH, Prestigiacomo LJ, Davidson NE (1996) Paclitaxel induces programmed cell death in MDA-MB-468 human breast cancer cells. Clin Cancer Res 2:847–854

    CAS  PubMed  Google Scholar 

  20. McGarvey ME, Tulpule A, Cai J, Zheng T, Masood R, Espina B, Arora N, Smith DL, Gill PS (1998) Emerging treatments for epidemic (AIDS-related) Kaposi’s sarcoma. Curr Opin Oncol 10:413–421

    CAS  PubMed  Google Scholar 

  21. Moore PS, Chang Y (1995) Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and without HIV infection. N Engl J Med 332:1811–1185

    Google Scholar 

  22. Oyaizu H, Adachi Y, Taketani S, Tokunaga R, Fukuhara S, Ikehara S (1999) A crucial role of caspase 3 and caspase 8 in paclitaxel-induced apoptosis. Mol Cell Biol Res Commun 2:36–41

    Article  CAS  PubMed  Google Scholar 

  23. Paroni G, Henderson C, Schneider C, Brancolini C (2001) Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 276:21907–21915

    Article  CAS  PubMed  Google Scholar 

  24. Rodi DJ, Janes RW, Sanganee HJ, Holton RA, Wallace BA, Makowski L (1999) Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 285:197–203

    Article  CAS  PubMed  Google Scholar 

  25. Sarosy G, Reed E (1993) Taxol dose intensification and its clinical implications. J Natl Med Assoc 85:427–431

    CAS  PubMed  Google Scholar 

  26. Schiff PB, Horwitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 20:3247–3252

    CAS  PubMed  Google Scholar 

  27. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    CAS  PubMed  Google Scholar 

  28. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L, Sigaux F (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86:1276–1280

    CAS  PubMed  Google Scholar 

  29. Sturzl M, Zietz C, Monini P, Ensoli B (2001) Human herpesvirus-8 and Kaposi’s sarcoma: relationship with the multistep concept of tumorigenesis. Adv Cancer Res 81:125–159

    Article  CAS  PubMed  Google Scholar 

  30. Varbiro G, Veres B, Gallyas F Jr, Sumegi B (2001) Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic Biol Med 31:548–558

    Article  CAS  PubMed  Google Scholar 

  31. Zhou HB, Zhu JR (2003) Paclitaxel induces apoptosis in human gastric carcinoma cells. World J Gastroenterol 9:442–445

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Fooyin University grant FY-91-015. We would like to thank Dr. Gary R. Whittaker for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YF., Chen, CY., Chung, SF. et al. Involvement of oxidative stress and caspase activation in paclitaxel-induced apoptosis of primary effusion lymphoma cells. Cancer Chemother Pharmacol 54, 322–330 (2004). https://doi.org/10.1007/s00280-004-0831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0831-0

Keywords

Navigation