Skip to main content
Log in

Cancer treatment and pharmacogenetics of cytochrome P450 enzymes

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

For the treatment of cancer, the window between drug toxicity and suboptimal therapy is often narrow. Interindividual variation in drug metabolism therefore complicates therapy. Genetic polymorphisms in phase I and phase II enzymes may explain part of the observed interindividual variation in pharmacokinetics and pharmacodynamics of anticancer drugs. The cytochrome P450 superfamily is involved in many drug metabolizing reactions. Information on variant alleles for the different isoenzymes of this family, encoding proteins with decreased enzymatic activity, is rapidly growing. The ultimate goal of ongoing research on these enzymes would be to enable pharmacogenetic screening prior to anticancer therapy. At this moment, potential clinically relevant application of CYP450 pharmacogenetics for anticancer therapy may be found for CYP1A2 and flutamide, CYP2A6 and tegafur, CYP2B6 and cyclophosphamide, CYP2C8 and paclitaxel, CYP2D6 and tamoxifen, and CYP3A5. For this latter enzyme, the drugs of interest still need to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinshilboum R: Thiopurine pharmacogenetics: Clinical and molecular studies of thiopurine methyltransferase. Drug Metab Dispos 29: 601–605, 2001

    CAS  PubMed  Google Scholar 

  2. Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH: High prevalence of the IVS14 + 1G > A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenetics 12: 555–558, 2002

    Article  CAS  PubMed  Google Scholar 

  3. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T, Fleming GF, Vokes EE, Schilsky RL, Ratain MJ: UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2: 43–47, 2002

    Article  CAS  PubMed  Google Scholar 

  4. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP: Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270: 414–423, 1994

    CAS  PubMed  Google Scholar 

  5. Schweikl H, Taylor JA, Kitareewan S, Linko P, Nagorney D, Goldstein JA: Expression of CYP1A1 and CYP1A2 genes in human liver. Pharmacogenetics 3: 239–249, 1993

    CAS  PubMed  Google Scholar 

  6. Shet MS, McPhaul M, Fisher CW, Stallings NR, Estabrook RW: Metabolism of the antiandrogenic drug (Flutamide) by human CYP1A2. Drug Metab Dispos 25: 1298–1303, 1997

    CAS  PubMed  Google Scholar 

  7. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T: Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 125: 803–808, 1999

    CAS  Google Scholar 

  8. Aklillu E, Carrillo JA, Makonnen E, Hellman K, Pitarque M, Bertilsson L, Ingelman-Sundberg M: Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: Characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol 64: 659–669, 2003

    Article  CAS  PubMed  Google Scholar 

  9. Allorge D, Chevalier D, Lo-Guidice JM, Cauffiez C, Suard F, Baumann P, Eap CB, Broly F: Identification of a novel splice-site mutation in the CYP1A2 gene. Br J Clin Pharmacol 56: 341–344, 2003

    Article  CAS  PubMed  Google Scholar 

  10. Murayama N, Soyama A, Saito Y, Nakajima Y, Komamura K, Ueno K, Kamakura S, Kitakaze M, Kimura H, Goto Y, Saitoh O, Katoh M, Ohnuma T, Kawai M, Sugai K, Ohtsuki T, Suzuki C, Minami N, Ozawa S, Sawada J: Six novel nonsynonymous CYP1A2 gene polymorphisms: Catalytic activities of the naturally occurring variant enzymes. J Pharmacol Exp Ther 308: 300–306, 2004

    CAS  PubMed  Google Scholar 

  11. Kajita J, Fuse E, Kuwabara T, Kobayashi H: The contribution of cytochrome P450 to the metabolism of tegafur in human liver. Drug Metab Pharmacokinet 18: 303–309, 2003

    Article  CAS  PubMed  Google Scholar 

  12. Ikeda K, Yoshisue K, Matsushima E, Nagayama S, Kobayashi K, Tyson CA, Chiba K, Kawaguchi Y: Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin Cancer Res 6: 4409–4415, 2000

    CAS  PubMed  Google Scholar 

  13. Malaiyandi V, Sellers EM, Tyndale RF: Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence. Clin Pharmacol Ther 77: 145–158, 2005

    Article  CAS  PubMed  Google Scholar 

  14. Daigo S, Takahashi Y, Fujieda M, Ariyoshi N, Yamazaki H, Koizumi W, Tanabe S, Saigenji K, Nagayama S, Ikeda K, Nishioka Y, Kamataki T: A novel mutant allele of the CYP2A6 gene (CYP2A6*11) found in a cancer patient who showed poor metabolic phenotype towards tegafur. Pharmacogenetics 12: 299–306, 2002

    Article  CAS  PubMed  Google Scholar 

  15. Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, Fackenthal JD, Rogan PK, Ring B, Wrighton SA, Schuetz EG: Hepatic CYP2B6 Expression: Gender and Ethnic Differences and Relationship to CYP2B6 Genotype and CAR (Constitutive Androstane Receptor) Expression. J Pharmacol Exp Ther 307: 906–922, 2003

    Article  CAS  PubMed  Google Scholar 

  16. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM: Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11: 399–415, 2001

    Article  CAS  PubMed  Google Scholar 

  17. Hiratsuka M, Takekuma Y, Endo N, Narahara K, Hamdy SI, Kishikawa Y, Matsuura M, Agatsuma Y, Inoue T, Mizugaki M: Allele and genotype frequencies of CYP2B6 and CYP3A5 in the Japanese population. Eur J Clin Pharmacol 58: 417–421, 2002

    Article  CAS  PubMed  Google Scholar 

  18. Xie HJ, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M, Rane A: Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics 3: 53–61, 2003

    Article  CAS  PubMed  Google Scholar 

  19. Tsuchiya K, Gatanaga H, Tachikawa N, Teruya K, Kikuchi Y, Yoshino M, Kuwahara T, Shirasaka T, Kimura S, Oka S: Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens. Biochem Biophys Res Commun 319: 1322–1326, 2004

    Article  CAS  PubMed  Google Scholar 

  20. Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Murdter TE, Roots I, Brockmoller J: Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 13: 619–626, 2003

    CAS  PubMed  Google Scholar 

  21. Schmidt R, Baumann F, Hanschmann H, Geissler F, Preiss R: Gender difference in ifosfamide metabolism by human liver microsomes. Eur J Drug Metab Pharmacokinet 26: 193–200, 2001

    CAS  PubMed  Google Scholar 

  22. Goldstein JA: Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 52: 349–355, 2001

    Article  CAS  PubMed  Google Scholar 

  23. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA: Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol. 46: 594–598, 1994

    CAS  PubMed  Google Scholar 

  24. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA: The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269: 15419–15422, 1994

    CAS  PubMed  Google Scholar 

  25. Griskevicius L, Yasar U, Sandberg M, Hidestrand M, Eliasson E, Tybring G, Hassan M, Dahl ML: Bioactivation of cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol 59: 103–109, 2003

    CAS  PubMed  Google Scholar 

  26. Relling MV, Evans WE, Fonne-Pfister R, Meyer UA: Anticancer drugs as inhibitors of two polymorphic cytochrome P450 enzymes, debrisoquin and mephenytoin hydroxylase, in human liver microsomes. Cancer Res 49: 68–71, 1989

    CAS  PubMed  Google Scholar 

  27. Ando Y, Fuse E, Figg WD: Thalidomide metabolism by the CYP2C subfamily. Clin Cancer Res 8: 1964–1973, 2002

    CAS  PubMed  Google Scholar 

  28. Goldstein JA, de Morais SM: Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4: 285–299, 1994

    CAS  PubMed  Google Scholar 

  29. Xie HG, Prasad HC, Kim RB, Stein CM: CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54: 1257–1270, 2002

    Article  CAS  PubMed  Google Scholar 

  30. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, Miners JO, Birkett DJ, Goldstein JA: The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6: 341–349, 1996

    CAS  PubMed  Google Scholar 

  31. Ieiri I, Tainaka H, Morita T, Hadama A, Mamiya K, Hayashibara M, Ninomiya H, Ohmori S, Kitada M, Tashiro N, Higuchi S, Otsubo K: Catalytic activity of three variants (Ile, Leu, and Thr) at amino acid residue 359 in human CYP2C9 gene and simultaneous detection using single-strand conformation polymorphism analysis. Ther Drug Monit 22: 237–244, 2000

    Article  CAS  PubMed  Google Scholar 

  32. Dickmann LJ, Rettie AE, Kneller MB, Kim RB, Wood AJ, Stein CM, Wilkinson GR, Schwarz UI: Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 60: 382–387, 2001

    CAS  PubMed  Google Scholar 

  33. Imai J, Ieiri I, Mamiya K, Miyahara S, Furuumi H, Nanba E, Yamane M, Fukumaki Y, Ninomiya H, Tashiro N, Otsubo K, Higuchi S: Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: Genetic analysis of the CYP2C9 locus. Pharmacogenetics 10: 85–89, 2000

    Article  CAS  PubMed  Google Scholar 

  34. Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA: Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 11: 803–808, 2001

    Article  CAS  PubMed  Google Scholar 

  35. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI, Goldstein JA: Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11: 597–607, 2001

    Article  CAS  PubMed  Google Scholar 

  36. Bahadur N, Leathart JB, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R, Houdt JV, Hendrickx J, Mannens G, Bohets H, Williams FM, Armstrong M, Crespi CL, Daly AK: CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6alpha-hydroxylase activity in human liver microsomes. Biochem Pharmacol 64: 1579–1589, 2002

    Article  CAS  PubMed  Google Scholar 

  37. Soyama A. Saito Y, Komamura K, Ueno K, Kamakura S, Ozawa S, Sawada J: Five novel single nucleotide polymorphisms in the CYP2C8 gene, one of which induces a frame shift. Drug Metab Pharmacokin 17: 374–377, 2002

    Google Scholar 

  38. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL: Polymorphic hydroxylation of Debrisoquine in man. Lancet 2: 584–586, 1977

    CAS  PubMed  Google Scholar 

  39. Gonzalez FJ, Skoda RC, Kimura S, Umeno M, Zanger UM, Nebert DW, Gelboin HV, Hardwick JP, Meyer UA: Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331: 442–446, 1988

    Article  CAS  PubMed  Google Scholar 

  40. Skoda RC, Gonzalez FJ, Demierre A, Meyer UA: Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci USA 85: 5240–5243, 1988

    CAS  PubMed  Google Scholar 

  41. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjoqvist F, Ingelman-Sundberg M: Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 90: 11825–11829, 1993

    CAS  PubMed  Google Scholar 

  42. Dahl ML, Johansson I, Bertilsson L, Ingelman-Sundberg M, Sjoqvist F: Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J Pharmacol Exp Ther 274: 516–520, 1995

    CAS  Google Scholar 

  43. Sachse C, Brockmoller J, Bauer S, Roots I: Cytochrome P450 2D6 variants in a Caucasian population: Allele frequencies and phenotypic consequences. Am J Hum Genet 60: 284–295, 1997

    CAS  PubMed  Google Scholar 

  44. Agundez JA, Ledesma MC, Ladero JM, Benitez J: Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther 57: 265–269, 1995

    CAS  PubMed  Google Scholar 

  45. Bernal M, Arcocha J, Peralta P, Valdizan JR: [Dystonic movements: a possible secondary effect of gabapentin]. Rev Neurol 28: 1215, 1999

    CAS  PubMed  Google Scholar 

  46. Scordo MG, Spina E, Facciola G, Avenoso A, Johansson I, Dahl ML: Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology (Berl) 147: 300–305, 1999

    CAS  Google Scholar 

  47. McLellan RA, Oscarson M, Seidegard J, Evans DA, Ingelman-Sundberg M: Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 7: 187–191, 1997

    CAS  PubMed  Google Scholar 

  48. Aklillu E, Persson I, Bertilsson L, Johansson I, Rodrigues F, Ingelman-Sundberg M: Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 278: 441–446, 1996

    CAS  PubMed  Google Scholar 

  49. Bradford LD: CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3: 229–243, 2002

    Article  CAS  PubMed  Google Scholar 

  50. Gaedigk A, Ryder DL, Bradford LD, Leeder JS: CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay for the -1584G promoter polymorphism. Clin Chem 49: 1008–1011, 2003

    CAS  PubMed  Google Scholar 

  51. Dehal SS, Kupfer D: CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 57: 3402–3406, 1997

    CAS  PubMed  Google Scholar 

  52. Stearns V, Johnson MD, Rae JM, Morocho A, Novielli A, Bhargava P, Hayes DF, Desta Z, Flockhart DA: Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 95: 1758–1764, 2003

    CAS  PubMed  Google Scholar 

  53. Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, Skaar T, Storniolo AM, Li L, Araba A, Blanchard R, Nguyen A, Ullmer L, Hayden J, Lemler S, Weinshilboum RM, Rae JM, Hayes DF, Flockhart DA: CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97: 30–39, 2005

    CAS  PubMed  Google Scholar 

  54. Nowell SA, Ahn J, Rae JM, Scheys JO, Trovato A, Sweeney C, MacLeod SL, Kadlubar FF, Ambrosone CB: Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 91: 249–258, 2005

    Article  CAS  PubMed  Google Scholar 

  55. van Schaik RHN, Teuling E, Meijer M, van der Heiden IP, van Fessem M, van Vliet M, van Staveren I, Look M, Klijn J, Foekens J, Lindemans J: CYP2C19 genotype predicts duration of response to tamoxifen in advanced breast cancer. Clin Pharmacol Ther 77: P23 (PI-56), 2005

    Google Scholar 

  56. Thummel KE, Wilkinson GR: In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 38: 389–430, 1998

    Article  CAS  PubMed  Google Scholar 

  57. Lamba JK, Lin YS, Schuetz EG, Thummel KE: Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 54: 1271–1294, 2002

    Article  CAS  PubMed  Google Scholar 

  58. Gellner K, Eiselt R, Hustert E, Arnold H, Koch I, Haberl M, Deglmann CJ, Burk O, Buntefuss D, Escher S, Bishop C, Koebe HG, Brinkmann U, Klenk HP, Kleine K, Meyer UA, Wojnowski L: Genomic organization of the human CYP3A locus: Identification of a new, inducible CYP3A gene. Pharmacogenetics 11: 111–121, 2001

    Article  CAS  PubMed  Google Scholar 

  59. Westlind A, Lofberg L, Tindberg N, Andersson TB, Ingelman-Sundberg M: Interindividual differences in hepatic expression of CYP3A4: Relationship to genetic polymorphism in the 5'-upstream regulatory region. Biochem Biophys Res Commun 259: 201–205, 1999

    Article  CAS  PubMed  Google Scholar 

  60. Ozdemir V, Kalowa W, Tang BK, Paterson AD, Walker SE, Endrenyi L, Kashuba AD: Evaluation of the genetic component of variability in CYP3A4 activity: A repeated drug administration method. Pharmacogenetics 10: 373–388, 2000

    Article  CAS  PubMed  Google Scholar 

  61. van Schaik RHN, van der Werf M, van der Heiden IP, Dorrestein S, Brosens R, Thiadens A, van Iperen NM, van Fessem M, van Vliet M, de Wildt SN, van den Anker JN, Lindemans J: CYP3A4, CYP3A5 and MDR-1 variant alleles in the Dutch Caucasian population. Clin Pharmacol Ther 73: 42, 2003

    Google Scholar 

  62. Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB: Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 90: 1225–1229, 1998

    Article  CAS  PubMed  Google Scholar 

  63. Walker AH, Jaffe JM, Gunasegaram S, Cummings SA, Huang CS, Chern HD, Olopade OI, Weber BL, Rebbeck TR: Characterization of an allelic variant in the nifedipine-specific element of CYP3A4: ethnic distribution and implications for prostate cancer risk. Mutations in brief no. 191. Online. Hum Mutat 12: 289, 1998

    CAS  PubMed  Google Scholar 

  64. Amirimani B, Walker AH, Weber BL, Rebbeck TR: RESPONSE: Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 91: 1588–1590, 1999

    Article  PubMed  Google Scholar 

  65. Spurdle AB, Goodwin B, Hodgson E, Hopper JL, Chen X, Purdie DM, McCredie MR, Giles GG, Chenevix-Trench G, Liddle C: The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics 12: 355–366, 2002

    Article  CAS  PubMed  Google Scholar 

  66. Sata F, Sapone A, Elizondo G, Stocker P, Miller VP, Zheng W, Raunio H, Crespi CL, Gonzalez FJ: CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 67: 48–56, 2000

    Article  CAS  PubMed  Google Scholar 

  67. Garcia-Martin E, Martinez C, Pizarro RM, Garcia-Gamito FJ, Gullsten H, Raunio H, Agundez JA: CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin Pharmacol Ther 71: 196–204, 2002

    CAS  PubMed  Google Scholar 

  68. Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S, Zhang J, Schuetz EG: Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 12: 121–132, 2002

    Article  CAS  PubMed  Google Scholar 

  69. Cavaco I, Gil JP, Gil-Berglund E, Ribeiro V: CYP3A4 and MDR1 alleles in a Portuguese population. Clin Chem Lab Med 41: 1345–1350, 2003

    CAS  PubMed  Google Scholar 

  70. van Schaik RH, de Wildt SN, Brosens R, van Fessem M, van den Anker JN, Lindemans J: The CYP3A4*3 allele: Is it really rare? Clin Chem 47: 1104–1106, 2001

    CAS  PubMed  Google Scholar 

  71. Dai D, Tang J, Rose R, Hodgson E, Bienstock RJ, Mohrenweiser HW, Goldstein JA: Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 299: 825–831, 2001

    CAS  PubMed  Google Scholar 

  72. Hsieh KP, Lin YY, Cheng CL, Lai ML, Lin MS, Siest JP, Huang JD: Novel mutations of CYP3A4 in Chinese. Drug Metab Dispos 29: 268–273, 2001

    CAS  PubMed  Google Scholar 

  73. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E: Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27: 383–391, 2001

    Article  CAS  PubMed  Google Scholar 

  74. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nuessler AC, Neuhaus P, Klattig J, Eiselt R, Koch I, Zibat A, Brockmoller J, Halpert JR, Zanger UM, Wojnowski L: The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11: 773–779, 2001

    Article  CAS  PubMed  Google Scholar 

  75. van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J: CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48: 1668–1671, 2002

    CAS  PubMed  Google Scholar 

  76. Tateishi T, Watanabe M, Moriya H, Yamaguchi S, Sato T, Kobayashi S: No ethnic difference between Caucasian and Japanese hepatic samples in the expression frequency of CYP3A5 and CYP3A7 proteins. Biochem Pharmacol 57: 935–939, 1999

    Article  CAS  PubMed  Google Scholar 

  77. Westlind-Johnsson A, Malmebo S, Johansson A, Otter C, Andersson TB, Johansson I, Edwards RJ, Boobis AR, Ingelman-Sundberg M: Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism. Drug Metab Dispos 31: 755–761, 2003

    Article  CAS  PubMed  Google Scholar 

  78. Thummel KE: Does the CYP3A5*3 polymorphism affect in vivo drug elimination? Pharmacogenetics 13: 585–587, 2003

    PubMed  Google Scholar 

  79. Murray GI, Pritchard S, Melvin WT, Burke MD: Cytochrome P450 CYP3A5 in the human anterior pituitary gland. FEBS Lett 364: 79–82, 1995

    Article  CAS  PubMed  Google Scholar 

  80. Koch I, Weil R, Wolbold R, Brockmoller J, Hustert E, Burk O, Nuessler A, Neuhaus P, Eichelbaum M, Zanger U, Wojnowski L: Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 30: 1108–1114, 2002

    Article  CAS  PubMed  Google Scholar 

  81. Haehner BD, Gorski JC, Vandenbranden M, Wrighton SA, Janardan SK, Watkins PB, Hall SD: Bimodal distribution of renal cytochrome P450 3A activity in humans. Mol Pharmacol 50: 52–59, 1996

    CAS  PubMed  Google Scholar 

  82. Finnstrom N, Bjelfman C, Soderstrom TG, Smith G, Egevad L, Norlen BJ, Wolf CR, Rane A: Detection of cytochrome P450 mRNA transcripts in prostate samples by RT-PCR. Eur J Clin Invest 31: 880–886, 2001

    Article  CAS  PubMed  Google Scholar 

  83. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN: Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 37: 485–505, 1999

    Article  CAS  PubMed  Google Scholar 

  84. Hesselink DA, van Schaik RHN, van der Heiden IP, van der Werf M, Smak Gregoor PJH, Lindemans J, Weimar W, van Gelder T: Genetic polymorphisms of the CYP3A4, CYP3A5 and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors Cyclosporine A and Tacrolimus. Clin Pharmacol Ther 74: 245–254, 2003

    Google Scholar 

  85. Schuetz JD, Beach DL, Guzelian PS: Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 4: 11–20, 1994

    CAS  PubMed  Google Scholar 

  86. Burk O, Tegude H, Koch I, Hustert E, Wolbold R, Glaeser H, Klein K, Fromm MF, Nuessler AK, Neuhaus P, Zanger UM, Eichelbaum M, Wojnowski L: Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem 277: 24280–24288, 2002

    Article  CAS  PubMed  Google Scholar 

  87. Smit P, van Schaik RH, van der Werf M, van den Beld AW, Koper JW, Lindemans J, Pols HA, Brinkmann AO, de Jong FH, Lamberts SW: A Common Polymorphism in the CYP3A7 Gene is Associated With a Nearly 50a% Reduction in Serum DHEAS levels. J Clin Endocrinol Metab, 2005

  88. Westlind A, Malmebo S, Johansson I, Otter C, Andersson TB, Ingelman-Sundberg M, Oscarson M: Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 281: 1349–1355, 2001

    Article  CAS  PubMed  Google Scholar 

  89. Domanski TL, Finta C, Halpert JR, Zaphiropoulos PG: cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol Pharmacol 59: 386–392, 2001

    CAS  PubMed  Google Scholar 

  90. Goh BC, Lee SC, Wang LZ, Fan L, Guo JY, Lamba J, Schuetz E, Lim R, Lim HL, Ong AB, Lee HS: Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 20: 3683–3690, 2002

    Article  CAS  PubMed  Google Scholar 

  91. Hirth J, Watkins PB, Strawderman M, Schott A, Bruno R, Baker LH: The effect of an individual's cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 6: 1255–1258, 2000

    CAS  PubMed  Google Scholar 

  92. Shou M, Martinet M, Korzekwa KR, Krausz KW, Gonzalez FJ, Gelboin HV: Role of human cytochrome P450 3A4 and 3A5 in the metabolism of taxotere and its derivatives: enzyme specificity, interindividual distribution and metabolic contribution in human liver. Pharmacogenetics 8: 391–401, 1998

    CAS  PubMed  Google Scholar 

  93. Kishi S, Yang W, Boureau B, Morand S, Das S, Chen P, Cook EH, Rosner GL, Schuetz E, Pui CH, Relling MV: Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 103: 67–72, 2004

    Article  CAS  PubMed  Google Scholar 

  94. Mathijssen RH, Verweij J, de Bruijn P, Loos WJ, Sparreboom A: Effects of St. John's wort on irinotecan metabolism. J Natl Cancer Inst 94: 1247–1249, 2002

    CAS  Google Scholar 

  95. Kehrer DF, Mathijssen RH, Verweij J, de Bruijn P, Sparreboom A: Modulation of irinotecan metabolism by ketoconazole. J Clin Oncol 20: 3122–3129, 2002

    CAS  PubMed  Google Scholar 

  96. Santos A, Zanetta S, Cresteil T, Deroussent A, Pein F, Raymond E, Vernillet L, Risse ML, Boige V, Gouyette A, Vassal G: Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res 6: 2012–2020, 2000

    CAS  PubMed  Google Scholar 

  97. Mathijssen RHJ, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J, Sparreboom A, Mcleod HL: Irinotecam pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 9: 3246–3253, 2003.

    Google Scholar 

  98. Kawashiro T, Yamashita K, Zhao XJ, Koyama E, Tani M, Chiba K, Ishizaki T: A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther 286: 1294–1300, 1998

    CAS  PubMed  Google Scholar 

  99. Chang TK, Weber GF, Crespi CL, Waxman DJ: Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53: 5629–5637, 1993

    CAS  PubMed  Google Scholar 

  100. Coller JK, Krebsfaenger N, Klein K, Endrizzi K, Wolbold R, Lang T, Nussler A, Neuhaus P, Zanger UM, Eichelbaum M, Murdter TE: The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol 54: 157–167, 2002

    Article  CAS  PubMed  Google Scholar 

  101. Crewe HK, Notley LM, Wunsch RM, Lennard MS, Gillam EM: Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: Formation of the 4-hydroxy, 4'-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 30: 869–874, 2002

    Article  CAS  PubMed  Google Scholar 

  102. Crewe HK, Ellis SW, Lennard MS, Tucker GT: Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol 53: 171-178, 1997

    Article  CAS  PubMed  Google Scholar 

  103. Cresteil T, Monsarrat B, Dubois J, Sonnier M, Alvinerie P, Gueritte F: Regioselective metabolism of taxoids by human CYP3A4 and 2C8: structure-activity relationship. Drug Metab Dispos 30: 438–445, 2002

    Article  CAS  PubMed  Google Scholar 

  104. Ren S, Yang JS, Kalhorn TF, Slattery JT: Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 57: 4229–4235, 1997

    CAS  PubMed  Google Scholar 

  105. Chang TK, Yu L, Goldstein JA, Waxman DJ: Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 7: 211–221, 1997

    CAS  PubMed  Google Scholar 

  106. McKillop D, McCormick AD, Millar A, Miles GS, Phillips PJ, Hutchison M: Cytochrome P450-dependent metabolism of gefitinib. Xenobiotica 35: 39–50, 2005

    Article  CAS  PubMed  Google Scholar 

  107. Chen CS, Jounaidi Y, Waxman DJ: Enantioselective metabolism and cytotoxicity of R-ifosfamide and S-ifosfamide by tumor cell-expressed cytochromes P450. Drug Metab Dispos, 2005

  108. Relling MV, Nemec J, Schuetz EG, Schuetz JD, Gonzalez FJ, Korzekwa KR: O-demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol 45: 352–358, 1994

    CAS  PubMed  Google Scholar 

  109. Rochat B: Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: Focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 44: 349–366, 2005

    Article  CAS  PubMed  Google Scholar 

  110. Zhou-Pan XR, Seree E, Zhou XJ, Placidi M, Maurel P, Barra Y, Rahmani R: Involvement of human liver cytochrome P450 3A in vinblastine metabolism: Drug interactions. Cancer Res 53: 5121–5126, 1993

    CAS  PubMed  Google Scholar 

  111. Zhou XJ, Zhou-Pan XR, Gauthier T, Placidi M, Maurel P, Rahmani R: Human liver microsomal cytochrome P450 3A isozymes mediated vindesine biotransformation. Metabolic drug interactions. Biochem Pharmacol 45: 853–861, 1993

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron H. N. van Schaik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Schaik, R.H.N. Cancer treatment and pharmacogenetics of cytochrome P450 enzymes. Invest New Drugs 23, 513–522 (2005). https://doi.org/10.1007/s10637-005-4019-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-005-4019-1

Key words

Navigation