Skip to main content
Log in

Use of extended protocols with nonstandard stimuli to characterize rod and cone contributions to the canine electroretinogram

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

In this study, we assessed several extended electroretinographic protocols using nonstandard stimuli. Our aim was to separate and quantify the contributions of different populations of retinal cells to the overall response, both to assess normal function and characterize dogs with inherited retinal disease.

Methods

We investigated three different protocols for measuring the full-field flash electroretinogram—(1) chromatic dark-adapted red and blue flashes, (2) increasing luminance blue-background, (3) flicker with fixed frequency and increasing luminance, and flicker with increasing frequency at a fixed luminance—to assess rod and cone contributions to electroretinograms recorded in phenotypically normal control dogs and dogs lacking rod function.

Results

Temporal separation of the rod- and cone-driven responses is possible in the fully dark-adapted eye using dim red flashes. A- and b-wave amplitudes decrease at different rates with increasing background luminance in control dogs. Flicker responses elicited with extended flicker protocols are well fit with mathematical models in control dogs. Dogs lacking rod function demonstrated larger amplitude dark-adapted compared to light-adapted flicker responses.

Conclusions

Using extended protocols of the full-field electroretinogram provides additional characterization of the health and function of different populations of cells in the normal retina and enables quantifiable comparison between phenotypically normal dogs and those with retinal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130:1–12. https://doi.org/10.1007/s10633-014-9473-7

    Article  PubMed  Google Scholar 

  2. Ekesten B, Komáromy AM, Ofri R, Petersen-Jones SM, Narfström K (2013) Guidelines for clinical electroretinography in the dog: 2012 update. Doc Ophthalmol 127:79–87. https://doi.org/10.1007/s10633-013-9388-8

    Article  PubMed  Google Scholar 

  3. Thompson DA, Fujinami K, Perlman I, Hamilton R, Robson AG (2018) ISCEV extended protocol for the dark-adapted red flash ERG. Doc Ophthalmol 136:191–197. https://doi.org/10.1007/s10633-018-9644-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brigell M, Jeffrey BG, Mahroo OA, Tzekov R (2020) ISCEV extended protocol for derivation and analysis of the strong flash rod-isolated ERG a-wave. Doc Ophthalmol 140:5–12. https://doi.org/10.1007/s10633-019-09740-4

    Article  PubMed  Google Scholar 

  5. Johnson MA, Jeffrey BG, Messias AMV, Robson AG (2019) ISCEV extended protocol for the stimulus–response series for the dark-adapted full-field ERG b-wave. Doc Ophthalmol 138:217–227. https://doi.org/10.1007/s10633-019-09687-6

    Article  PubMed  Google Scholar 

  6. McCulloch DL, Kondo M, Hamilton R, Lachapelle P, Messias AMV, Robson AG, Ueno S (2019) ISCEV extended protocol for the stimulus–response series for light-adapted full-field ERG. Doc Ophthalmol 138:205–215. https://doi.org/10.1007/s10633-019-09685-8

    Article  PubMed  Google Scholar 

  7. Sustar M, Holder GE, Kremers J, Barnes CS, Lei B, Khan NW, Robson AG (2018) ISCEV extended protocol for the photopic On–Off ERG. Doc Ophthalmol 136:199–206. https://doi.org/10.1007/s10633-018-9645-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frishman L, Sustar M, Kremers J, McAnany JJ, Sarossy M, Tzekov R, Viswanathan S (2018) ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol 136:207–211. https://doi.org/10.1007/s10633-018-9638-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Perlman I, Kondo M, Chelva E, Robson AG, Holder GE (2020) ISCEV extended protocol for the S-cone ERG. Doc Ophthalmol 140:95–101. https://doi.org/10.1007/s10633-019-09730-6

    Article  PubMed  Google Scholar 

  10. Lim S-H, Ohn Y-H (2005) Study of blue and red flash in dark-adapted electroretinogram. Korean J Ophthalmol 19:106. https://doi.org/10.3341/kjo.2005.19.2.106

    Article  PubMed  Google Scholar 

  11. Kremers J (2003) The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina. Prog Retin Eye Res 22:579–605. https://doi.org/10.1016/S1350-9462(03)00049-1

    Article  PubMed  Google Scholar 

  12. Arden G, Wolf J, Berninger T, Hogg CR, Tzekov R, Holder GE (1999) S-cone ERGs elicited by a simple technique in normals and in tritanopes. Vision Res 39:641–650. https://doi.org/10.1016/s0042-6989(98)00182-5

    Article  CAS  PubMed  Google Scholar 

  13. Armington JC (1952) A Component of the human electroretinogram associated with red color vision*. J Opt Soc Am 42:393. https://doi.org/10.1364/JOSA.42.000393

    Article  CAS  PubMed  Google Scholar 

  14. De Rouck A, Francois J, Verriest G (1956) Pathology of the x-wave of the human electroretinogram. I. Red-blindness and other congenital functional abnormalities. Br J Ophthalmol 40:439–443. https://doi.org/10.1136/bjo.40.7.439

    Article  PubMed Central  Google Scholar 

  15. Kellner U, Foerster MH (1992) Color electroretinography: a method for separation of dysfunctions of cones. Doc Ophthalmol 80:13–23. https://doi.org/10.1007/BF00161227

    Article  CAS  PubMed  Google Scholar 

  16. Kremers J, Jertila M, Link B, Pangeni G, Horn FK (2012) Spectral characteristics of the PhNR in the full-field flash electroretinogram of normals and glaucoma patients. Doc Ophthalmol 124:79–90. https://doi.org/10.1007/s10633-011-9304-z

    Article  PubMed  Google Scholar 

  17. Mowat FM, Wise E, Oh A, Foster ML, Kremers J (2019) In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli. Exp Eye Res 185:107673. https://doi.org/10.1016/j.exer.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  18. Narfström K, Andersson B-E, Andreasson S, Gouras P (1995) Clinical electroretinography in the dog with ganzfeld stimulation: a practical method of examining rod and cone function. Doc Ophthalmol 90:279–290. https://doi.org/10.1007/BF01203863

    Article  PubMed  Google Scholar 

  19. Aguirre GD, Rubin LF (1975) The electroretinogram in dogs with inherited cone degeneration. Invest Ophthalmol 14:840–847

    CAS  PubMed  Google Scholar 

  20. Aguirre G (1978) Retinal degenerations in the dog. I Rod dysplasia Experimental Eye Research 26:233–253. https://doi.org/10.1016/0014-4835(78)90072-6

    Article  CAS  PubMed  Google Scholar 

  21. Narfström K, Ekesten B (1998) Electroretinographic evaluation of Papillons with and without hereditary retinal degeneration. Am J Vet Res 59:221–226

    PubMed  Google Scholar 

  22. Aguirre GD, Rubin LF (1971) Progressive retinal atrophy (rod dysplasia in the Norwegian Elkhound. J Am Vet Med Assoc 158:208–218

    CAS  PubMed  Google Scholar 

  23. Jacobs GH, Deegan JF, Crognale MA, Fenwick JA (1993) Photopigments of dogs and foxes and their implications for canid vision. Vis Neurosci 10:173–180. https://doi.org/10.1017/S0952523800003291

    Article  CAS  PubMed  Google Scholar 

  24. Maehara S, Osawa A, Itoh N, Wakaiki S, Tsuzuki K, Seno T, Kushiro T, Yamashita K, Izumisawa Y, Kotani T (2005) Detection of cone dysfunction induced by digoxin in dogs by multicolor electroretinography. Vet Ophthalmol 8:407–413. https://doi.org/10.1111/j.1463-5224.2005.00415.x

    Article  PubMed  Google Scholar 

  25. Rufiange M, Rousseau S, Dembinska O, Lachapelle P (2002) Cone-dominated ERG luminance–response function: the Photopic Hill revisited. Doc Ophthalmol 104:231–248. https://doi.org/10.1023/A:1015265812018

    Article  PubMed  Google Scholar 

  26. Wali N, Leguire LE (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80:335–342. https://doi.org/10.1007/BF00154382

    Article  CAS  PubMed  Google Scholar 

  27. Sieving PA, Murayama K, Naarendorp F (1994) Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11:519–532

    Article  CAS  Google Scholar 

  28. Bloomfield SA, Dacheux RF (2001) Rod vision: pathways and processing in the mammalian retina. Prog Retin Eye Res 20:351–384. https://doi.org/10.1016/s1350-9462(00)00031-8

    Article  CAS  PubMed  Google Scholar 

  29. Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703–712. https://doi.org/10.1016/s0896-6273(02)01046-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Field GD, Chichilnisky EJ (2007) Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci 30:1–30. https://doi.org/10.1146/annurev.neuro.30.051606.094252

    Article  CAS  PubMed  Google Scholar 

  31. Sharpe LT, Stockman A (1999) Rod pathways: the importance of seeing nothing. Trends Neurosci 22:497–504. https://doi.org/10.1016/s0166-2236(99)01458-7

    Article  CAS  PubMed  Google Scholar 

  32. Tsukamoto Y, Morigiwa K, Ueda M, Sterling P (2001) Microcircuits for night vision in mouse retina. J Neurosci 21:8616–8623

    Article  CAS  Google Scholar 

  33. Cameron AM, Mahroo OAR, Lamb TD, (2006) Dark adaptation of human rod bipolar cells measured from the b-wave of the scotopic electroretinogram. J Physiol (Lond) 575:507–526. https://doi.org/10.1113/jphysiol.2006.108027

    Article  CAS  Google Scholar 

  34. Peachey NS, Alexander KR, Fishman GA, Derlacki DJ (1989) Properties of the human cone system electroretinogram during light adaptation. Appl Opt 28:1145–1150. https://doi.org/10.1364/AO.28.001145

    Article  CAS  PubMed  Google Scholar 

  35. Sustar M, Hawlina M, Brecelj J (2006) ON- and OFF-response of the photopic electroretinogram in relation to stimulus characteristics. Doc Ophthalmol 113:43–52. https://doi.org/10.1007/s10633-006-9013-1

    Article  PubMed  Google Scholar 

  36. Thomas MM, Lamb TD (1999) Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram. J Physiol (Lond) 518(Pt 2):479–496. https://doi.org/10.1111/j.1469-7793.1999.0479p.x

    Article  CAS  Google Scholar 

  37. Heck J (1957) The flicker electroretinogram of the human eye. Acta Physiol Scand 39:158–166. https://doi.org/10.1111/j.1748-1716.1957.tb01417.x

    Article  CAS  PubMed  Google Scholar 

  38. Lei B (2012) Rod-driven OFF pathway responses in the distal retina: dark-adapted flicker electroretinogram in mouse. PLoS ONE 7:e43856. https://doi.org/10.1371/journal.pone.0043856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peachey NS, Alexander KR, Fishman GA (1991) Visual adaptation and the cone flicker electroretinogram. Invest Ophthalmol Vis Sci 32:1517–1522

    CAS  PubMed  Google Scholar 

  40. Tanimoto N, Sothilingam V, Kondo M, Biel M, Humphries P, Seeliger MW (2015) Electroretinographic assessment of rod- and cone-mediated bipolar cell pathways using flicker stimuli in mice. Sci Rep 5:10731. https://doi.org/10.1038/srep10731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coile DC, Pollitz CH, Smith JC (1989) Behavioral determination of critical flicker fusion in dogs. Physiol Behav 45:1087–1092. https://doi.org/10.1016/0031-9384(89)90092-9

    Article  CAS  PubMed  Google Scholar 

  42. Petersen-Jones SM, Entz DD, Sargan DR (1999) cGMP phosphodiesterase-α mutation causes progressive retinal atrophy in the Cardigan Welsh corgi dog. Invest Ophthalmol Vis Sci 40:1637–1644

    CAS  PubMed  Google Scholar 

  43. Tuntivanich N, Pittler SJ, Fischer AJ, Omar G, Kiupel M, Weber A, Yao S, Steibel JP, Khan NW, Petersen-Jones SM (2009) Characterization of a canine model of autosomal recessive retinitis pigmentosa due to a PDE6A mutation. Investigative Opthalmology & Visual Science 50:801. https://doi.org/10.1167/iovs.08-2562

    Article  Google Scholar 

  44. Sidjanin DJ (2002) Canine CNGB3 mutations establish cone degeneration as orthologous to the human achromatopsia locus ACHM3. Hum Mol Genet 11:1823–1833. https://doi.org/10.1093/hmg/11.16.1823

    Article  CAS  PubMed  Google Scholar 

  45. Hood DC, Birch DG (1993) Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity. Vision Res 33:1605–1618. https://doi.org/10.1016/0042-6989(93)90027-T

    Article  CAS  PubMed  Google Scholar 

  46. Hood DC, Birch DG (1995) Phototransduction in human cones measured using the a-wave of the ERG. Vision Res 35:2801–2810. https://doi.org/10.1016/0042-6989(95)00034-W

    Article  CAS  PubMed  Google Scholar 

  47. Naka KI, Rushton WAH (1967) The generation and spread of S-potentials in fish (Cyprinidae). J Physiol 192:437–461. https://doi.org/10.1113/jphysiol.1967.sp008308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gum GG, Gelatt KN, Samuelson DA (1984) Maturation of the retina of the canine neonate as determined by electroretinography and histology. Am J Vet Res 45:1166–1171

    CAS  PubMed  Google Scholar 

  49. Annear MJ, Bartoe JT, Barker SE, Smith AJ, Curran PG, Bainbridge JW, Ali RR, Petersen-Jones SM (2011) Gene therapy in the second eye of RPE65-deficient dogs improves retinal function. Gene Ther 18:53–61. https://doi.org/10.1038/gt.2010.111

    Article  CAS  PubMed  Google Scholar 

  50. Naka KI, Rushton WAH (1966) S-potentials from luminosity units in the retina of fish (Cyprinidae). J Physiol 185:587–599. https://doi.org/10.1113/jphysiol.1966.sp008003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Evans LS, Peachey NS, Marchese AL (1993) Comparison of three methods of estimating the parameters of the Naka-Rushton equation. Doc Ophthalmol 84:19–30

    Article  CAS  Google Scholar 

  52. Seeliger MW, Brombas A, Weiler R, Humphries P, Knop G, Tanimoto N, Müller F (2011) Modulation of rod photoreceptor output by HCN1 channels is essential for regular mesopic cone vision. Nat Commun 2:532. https://doi.org/10.1038/ncomms1540

    Article  CAS  PubMed  Google Scholar 

  53. Seabold, Skipper, Perktold, Josef (2010) Statsmodels: Econometric and statistical modeling with python. Proceedings of the 9th Python in Science Conference

  54. Montgomery DC (2020) Design and analysis of experiments, 10th edn. Wiley, Hoboken, NJ

    Google Scholar 

  55. Jacobs GH, Jones AE, De Valois RL (1963) Electroretinogram of the squirrel monkey. J Comp Physiol Psychol 56:405–409. https://doi.org/10.1037/h0046899

    Article  CAS  PubMed  Google Scholar 

  56. Donner K (1992) Noise and the absolute thresholds of cone and rod vision. Vision Res 32:853–866. https://doi.org/10.1016/0042-6989(92)90028-h

    Article  CAS  PubMed  Google Scholar 

  57. Dunn FA, Doan T, Sampath AP, Rieke F (2006) Controlling the gain of rod-mediated signals in the Mammalian retina. J Neurosci 26:3959–3970. https://doi.org/10.1523/JNEUROSCI.5148-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Frishman LJ, Robson JG, Reddy MG (1996) Effects of background light on the human dark-adapted electroretinogram and psychophysical threshold. J Opt Soc Am A 13:601. https://doi.org/10.1364/JOSAA.13.000601

    Article  CAS  Google Scholar 

  59. Shapley R, Enroth-Cugell C (1984) Chapter 9 Visual adaptation and retinal gain controls. Progress in Retinal Research 3:263–346. https://doi.org/10.1016/0278-4327(84)90011-7

  60. Dunn FA, Rieke F (2006) The impact of photoreceptor noise on retinal gain controls. Curr Opin Neurobiol 16:363–370. https://doi.org/10.1016/j.conb.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  61. Perlman I, Normann RA (1998) Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors. Prog Retin Eye Res 17:523–563. https://doi.org/10.1016/s1350-9462(98)00005-6

    Article  CAS  PubMed  Google Scholar 

  62. Ekesten B, Gouras P, Moschos M (1998) Cone properties of the light-adapted murine ERG. Doc Ophthalmol 97:23–31. https://doi.org/10.1023/a:1001869212639

    Article  PubMed  Google Scholar 

  63. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136

    CAS  PubMed  Google Scholar 

  64. Li B, Barnes GE, Holt WF (2005) The decline of the photopic negative response (PhNR) in the rat after optic nerve transection. Doc Ophthalmol 111:23–31. https://doi.org/10.1007/s10633-005-2629-8

    Article  CAS  PubMed  Google Scholar 

  65. Normann RA, Werblin FS (1974) Control of Retinal Sensitivity. J Gen Physiol 63:37–61. https://doi.org/10.1085/jgp.63.1.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith EL, Harwerth RS, Crawford ML, Duncan GC (1989) Contribution of the retinal ON channels to scotopic and photopic spectral sensitivity. Vis Neurosci 3:225–239. https://doi.org/10.1017/s0952523800009986

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Janice Querubin (Michigan State University Research and Teaching Technical Support) for her help with ERG data collection, anesthesia, and general care for the animals included in this study.

Funding

SMPJ: NIH R24EY027285, Tistou and Charlotte Kerstan Stiftung, Myers-Dunlap Endowment (SMPJ is the Myers-Dunlap Endowed Chair in Canine Health). AK: NIH R01-EY019304 and NIH R01-EY02575.

Author information

Authors and Affiliations

Authors

Contributions

NP has participated in the conception and design of the manuscript, in all data analysis and interpretation, and in manuscript writing. LMO has participated in the conception and design of the project, in the ERG protocols design, data collection organization and acquisition, and early analysis of data, as well as manuscript editing. AK has participated in part of the manuscript design and in the manuscript editing. SMPJ has participated in the entire project conception and design, in data analysis and interpretation, in the conception and design of the manuscript, in interpretation of data, and in manuscript writing. All have approved the submitted version.

Corresponding author

Correspondence to Simon M. Petersen-Jones.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Informed consent was not applicable.

Statement of human rights

This article does not contain any studies with human participants performed by any of the authors.

Statement on the welfare of animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasmanter, N., Occelli, L.M., Komáromy, A.M. et al. Use of extended protocols with nonstandard stimuli to characterize rod and cone contributions to the canine electroretinogram. Doc Ophthalmol 144, 81–97 (2022). https://doi.org/10.1007/s10633-022-09866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-022-09866-y

Keywords

Navigation