Skip to main content

Advertisement

Log in

Assessment of macular function of glaucomatous eyes by multifocal electroretinograms

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To determine whether significant correlations existed between the morphological and functional parameters of the macular region of eyes with open-angle glaucoma (OAG).

Methods

Forty eyes of 40 OAG patients were studied. The morphological parameters were obtained by optical coherence tomography (OCT), and the functional parameters were acquired by automated Humphrey Field Analyzer (HFA) and multifocal electroretinograms (mfERGs). All of the tests were performed within 6 months of each other. The retinal thickness was determined by OCT in the nine Early Treatment of Diabetic Retinopathy Study (ETDRS) sectors of the macula, the fovea, and the four quadrants of the inner and an outer ring. The amplitudes of the second-order kernel responses of the mfERGs in the central 5° including the amplitude ratio of the nasal to temporal hemispheres (N/T amplitude ratio) were analyzed. The total mean deviation of the HFA corresponding to each OCT region was measured. The correlation between the different parameters was determined by coefficients of correlation and linear regression analyses.

Results

The N/T amplitude ratio of the second-order kernel responses of the mfERGs was significantly correlated with the retinal thickness in the inferior quadrant (r = −0.44; P = 0.004). There was a significant correlation between the N/T amplitude ratio and the threshold in the superior quadrant measured by the HFA Central 10-2 program (r = −0.40; P = 0.011) and also between the N/T amplitude ratio and the total deviation in the superior quadrant (r = −0.40; P = 0.010). There were significant correlations between the inferior retinal thickness and the average threshold and the TD in superior (r = 0.70, P < 0.001; r = 0.692, P < 0.001, respectively), nasal (r = 0.53, P < 0.001; r = 0.53, P < 0.001, respectively), and temporal (r = 0.46, P = 0.003; r = 0.44, P = 0.004, respectively) quadrants.

Conclusions

Functional glaucomatous changes determined by mfERGs and perimetry are significantly correlated with the morphological changes determined by OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83

    Article  PubMed  CAS  Google Scholar 

  2. Ly T, Gupta N, Weinreb RN, Kaufman PL, Yücel YH (2011) Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vision Res 51:243–250

    Article  PubMed  Google Scholar 

  3. Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99:19–28

    PubMed  CAS  Google Scholar 

  4. Zeyen TG, Caprioli J (1993) Progression of disc and field damage in early glaucoma. Arch Ophthalmol 111:62–65

    Article  PubMed  CAS  Google Scholar 

  5. Park SB, Sung KR, Kang SY, Kim KR, Kook MS (2009) Comparison of glaucoma diagnostic capabilities of Cirrus HD and Stratus optical coherence tomography. Arch Ophthalmol 127:1603–1609

    Article  PubMed  Google Scholar 

  6. Zeimer R, Asrani S, Zou S, Quigley H, Jampel H (1998) Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 105:224–231

    Article  PubMed  CAS  Google Scholar 

  7. Lederer DE, Schuman JS, Hertzmark E, Heltzer J, Velazques LJ, Fujimoto JG, Mattox C (2003) Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am J Ophthalmol 135:838–843

    Article  PubMed  Google Scholar 

  8. Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, Lederer D, Voskanian S, Velazquez L, Pakter HM, Pedut-Kloizman T, Fujimoto JG, Mattox C (2003) Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–189

    Article  PubMed  Google Scholar 

  9. Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121:41–46

    Article  PubMed  Google Scholar 

  10. Parikh RS, Parikh SR, Thomas R (2010) Diagnostic capability of macular parameters of Stratus OCT 3 in detection of early glaucoma. Br J Ophthalmol 94:197–201

    Article  PubMed  CAS  Google Scholar 

  11. Velten IM, Korth M, Horn FK (2001) The a-wave of the dark adapted electroretinogram in glaucomas: are photoreceptors affected? Br J Ophthalmol 85:397–402

    Article  PubMed  CAS  Google Scholar 

  12. Sehi M, Pinzon-Plazas M, Feuer WJ, Greenfield DS (2009) Relationship between pattern electroretinogram, standard automated perimetry, and optic nerve structural assessments. J Glaucoma 18:608–617

    Article  PubMed  Google Scholar 

  13. Machida S, Tamada K, Oikawa T, Yokoyama D, Kaneko M, Kurosaka D (2010) Sensitivity and specificity of photopic negative response of focal electoretinogram to detect glaucomatous eyes. Br J Ophthalmol 94:202–208

    Article  PubMed  CAS  Google Scholar 

  14. Vincent A, Shetty R, Devi SA, Kurian MK, Balu R, Shetty B (2010) Functional involvement of cone photoreceptors in advanced glaucoma: a multifocal electroretinogram study. Doc Ophthalmol 121:21–27

    Article  PubMed  Google Scholar 

  15. Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, Odel JG, Ritch R (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579

    PubMed  CAS  Google Scholar 

  16. Asano E, Mochizuki K, Sawada A, Nagasaka E, Kondo Y, Yamamoto T (2007) Decreased nasal-temporal asymmetry of the second-order kernel response of multifocal electroretinograms in eyes with normal-tension glaucoma. Jpn J Ophthalmol 51:379–389

    Article  PubMed  Google Scholar 

  17. Nakamura H, Hangai M, Mori S, Hirose F, Yoshimura N (2011) Hemispherical focal macular photopic negative response and macular inner retinal thickness in open-angle glaucoma. Am J Ophthalmol 151:494–506

    Article  PubMed  Google Scholar 

  18. Falsini B, Marangoni D, Salgarello T, Stifano G, Montrone L, Campagna F, Aliberti S, Balestrazzi E, Colotto A (2008) Structure–function relationship in ocular hypertension and glaucoma: interindividual and interocular analysis by OCT and pattern ERG. Graefes Arch Clin Exp Ophthalmol 246:1153–1162

    Article  PubMed  Google Scholar 

  19. Vaegan, Graham SL, Goldberg I, Buckland L, Hollows FC (1995) Flash and pattern electroretinogram changes with optic atrophy and glaucoma. Exp Eye Res 60:697–706

  20. Weiner A, Ripkin DJ, Patel S, Kaufman SR, Kohn HD, Weidenthal DT (1998) Foveal dysfunction and central visual field loss in glaucoma. Arch Ophthalmol 116:1169–1174

    PubMed  CAS  Google Scholar 

  21. Bearse MA Jr, Sim D, Sutter EE, Stamper R, Leiberman M (1996) Application of the multi-focal ERG to glaucoma. Invest Ophthalmol Vis Sci 37:S511

    Google Scholar 

  22. Hasegawa S, Takagi M, Usui T, Takada R, Abe H (2000) Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma. Invest Ophthalmol Vis Sci 41:1597–1603

    PubMed  CAS  Google Scholar 

  23. Fortune B, Johnson CA, Cioffi GA (2001) The topographic relationship between multifocal electroretinographic and behavioral perimetric measures of function in glaucoma. Optom Vis Sci 78:206–214

    Article  PubMed  CAS  Google Scholar 

  24. Jonas JB, Schneider U, Naumann GO (1992) Count and density of human retinal photoreceptors. Graefes Arch Clin Exp Ophthalmol 230:505–510

    Article  PubMed  CAS  Google Scholar 

  25. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    Article  PubMed  CAS  Google Scholar 

  26. Chan HH, Brown B (2000) Pilot study of the multifocal electroretinogram in ocular hypertension. Br J Ophthalmol 84:1147–1153

    Article  PubMed  CAS  Google Scholar 

  27. Chan HL, Brown B (1999) Multifocal ERG changes in glaucoma. Ophthalmic Physiol 19:306–316

    Article  CAS  Google Scholar 

  28. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM, International Society For Clinical Electrophysiology of Vision (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124:1–13

  29. Sutter EE, Bearse MA (1999) The optic nerve head component of the human ERG. Vision Res 39:419–436

    Article  PubMed  CAS  Google Scholar 

  30. Hood DC, Raza AS (2011) Method for comparing visual field defects to local RNFL and RGC damage seen on frequency domain OCT in patients with glaucoma. Biomed Opt Express 2:1097–1105

    Article  PubMed  Google Scholar 

  31. Luo X, Patel NB, Harwerth RS, Frishman LJ (2011) Loss of the low-frequency component of the global-flash multifocal electroretinogram in primate eyes with experimental glaucoma. Invest Ophthalmol Vis Sci 52:3792–3804

    Article  PubMed  Google Scholar 

  32. Fortune B, Bearse MA Jr, Cioffi GA, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647

    PubMed  Google Scholar 

  33. Hood DC, Zhang X (2000) Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol 100:115–137

    Article  PubMed  CAS  Google Scholar 

  34. Palmowski-Wolfe AM, Allgayer RJ, Vernaleken B, Schötzau A, Ruprecht KW (2006) Slow-stimulated multifocal ERG in high- and normal-tension glaucoma. Doc Ophthalmol 112:157–168

    Article  PubMed  Google Scholar 

  35. Chu PH, Chan HH, Brown B (2006) Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 47:929–937

    Article  PubMed  Google Scholar 

  36. Chu PH, Ng YF, Ting PW, Lung JC, Ho WC, So KF, To CH, Chan HH (2011) Effect of inner retinal dysfunction on slow double-stimulation multifocal electroretinogram. Br J Ophthalmol 95:1597–1602

    Article  PubMed  Google Scholar 

  37. Hood DC (2000) Assessing retinal function with the multifocal technique. Prog Retin Eye Res 19:607–646

    Article  PubMed  CAS  Google Scholar 

  38. Kawabata H, Adachi-Usami E (1997) Multifocal electroretinogram in myopia. Invest Ophthalmol Vis Sci 38:2844–2851

    PubMed  CAS  Google Scholar 

  39. Chan HL, Mohidin N (2003) Variation of multifocal electroretinogram with axial length. Ophthalmic Physiol Opt 23:133–140

    Article  PubMed  CAS  Google Scholar 

  40. Chen JC, Brown B, Schmid KL (2006) Delayed mfERG responses in myopia. Vision Res 46:1221–1229

    Article  PubMed  Google Scholar 

  41. Luu CD, Lau AM, Lee SY (2006) Multifocal electroretinogram in adults and children with myopia. Arch Ophthalmol 124:328–334

    Article  PubMed  Google Scholar 

  42. Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, Inoue Y, Kitazawa Y, Tajimi Study Group (2006) Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology 113:1613–1617

    Google Scholar 

  43. Glovinsky Y, Quigley HA, Pease ME (1993) Foveal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 34:395–400

    PubMed  CAS  Google Scholar 

  44. Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC, Fujimoto JG, Ishikawa H (2004) Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 138:218–225

    Article  PubMed  Google Scholar 

  45. Legarreta JE, Gregori G, Punjabi OS, Knighton RW, Lalwani GA, Puliafito CA (2008) Macular thickness measurements in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 39(Suppl):S43–S49

    PubMed  Google Scholar 

  46. Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, Schuman JS, Duker JS (2010) Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina 30:235–245

    Article  PubMed  Google Scholar 

  47. Chu PH, Ng YF, To CH, So KF, Brown B, Chan HH (2012) Luminance-modulated adaptation in the global flash mfERG: a preliminary study of early retinal functional changes in high-risk glaucoma patients. Graefes Arch Clin Exp Ophthalmol 250:261–270

    Article  PubMed  Google Scholar 

  48. Kotera Y, Hangai M, Hirose F, Mori S, Yoshimura N (2011) Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1412–1421

    Article  PubMed  Google Scholar 

  49. Sato A, Fukui E, Ohta K (2010) Retinal thickness of myopic eyes determined by spectralis optical coherence tomography. Br J Ophthalmol 94:1624–1628

    Article  PubMed  Google Scholar 

  50. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314

    Article  PubMed  Google Scholar 

  51. Raza AS, Cho J, de Moraes CG, Wang M, Zhang X, Kardon RH, Liebmann JM, Ritch R, Hood DC (2011) Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol 129:1529–1536

    Article  PubMed  Google Scholar 

  52. Bowd C, Tafreshi A, Zangwill LM, Medeiros FA, Sample PA, Weinreb RN (2011) Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye 25:224–232

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sawada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hori, N., Komori, S., Yamada, H. et al. Assessment of macular function of glaucomatous eyes by multifocal electroretinograms. Doc Ophthalmol 125, 235–247 (2012). https://doi.org/10.1007/s10633-012-9351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-012-9351-0

Keywords

Navigation