Skip to main content

Advertisement

Log in

Luminance-modulated adaptation in the global flash mfERG: a preliminary study of early retinal functional changes in high-risk glaucoma patients

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the association of the luminance-modulation global flash multifocal electroretinogram (mfERG) and other clinical assessments of vision in subsets of subjects at high risk of developing glaucomatous damage.

Methods

Eighteen subjects (28 eyes) with asymmetric glaucoma and ocular hypertension were measured in this longitudinal study of visual field, OCT, and multifocal electroretinogram (mfERG). Five ophthalmic examinations were scheduled, once every 12 months over a 4-year period. The mfERG was assessed using a luminance-modulated global flash stimulation paradigm. The adaptive index which we have reported previously was calculated.

Results

There was a significant thinning of the peripapillary retinal nerve fiber layer over the course of the study for eyes with ocular hypertension, or for fellow eyes with asymmetric glaucoma which initially had an abnormal adaptive index; such eyes showed a thinning rate of −3.59 and −3.69 μm/year, respectively. However, no significant thinning was found for eyes which initially had a normal adaptive index. Two subjects were shown to have glaucomatous damage, confirmed by abnormal thinning of the retinal nerve fiber layer and visual field loss respectively at the last visit. However, these patients had shown an abnormal adaptive index in the mfERG measurement at the first visit.

Conclusions

The adaptive index calculated from the measurement of luminance-modulated global flash mfERG is useful for predicting progression of signs related to glaucoma, especially in high-risk groups. The abnormal adaptive index reflects the change in fast-adaptive mechanisms in the retina and indicates the risk of developing glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Quigley HA (1993) Open-angle glaucoma. N Engl J Med 328:1097–1106

    Article  PubMed  CAS  Google Scholar 

  2. Harbin TS Jr, Podos SM, Kolker AE, Becker B (1976) Visual field progression in open-angle glaucoma patients presenting with monocular field loss. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 81:253–257

    PubMed  Google Scholar 

  3. Kass MA, Kolker AE, Becker B (1976) Prognostic factors in glaucomatous visual field loss. Arch Ophthalmol 94:1274–1276

    Article  PubMed  CAS  Google Scholar 

  4. Susanna R, Drance SM, Douglas GR (1978) The visual prognosis of the fellow eye in uniocular chronic open-angle glaucoma. Br J Ophthalmol 62:327–329

    Article  PubMed  CAS  Google Scholar 

  5. Olivius E, Thorburn W (1978) Prognosis of glaucoma simplex and glaucoma capsulare. A comparative study. Acta Ophthalmol Copenh 56:921–934

    Article  PubMed  CAS  Google Scholar 

  6. Poinoosawmy D, Fontana L, Wu JX, Bunce CV, Hitchings RA (1998) Frequency of asymmetric visual field defects in normal-tension and high-tension glaucoma. Ophthalmology 105:988–991

    Article  PubMed  CAS  Google Scholar 

  7. Keltner JL, Johnson CA, Anderson DR, Levine RA, Fan J, Cello KE, Quigley HA, Budenz DL, Parrish RK, Kass MA, Gordon MO (2006) The association between glaucomatous visual fields and optic nerve head features in the Ocular Hypertension Treatment Study. Ophthalmology 113:1603–1612

    Article  PubMed  Google Scholar 

  8. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK, Wilson MR, Gordon MO (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713, discussion 829–730

    PubMed  Google Scholar 

  9. Leske MC (1983) The epidemiology of open-angle glaucoma: a review. Am J Epidemiol 118:166–191

    PubMed  CAS  Google Scholar 

  10. Harwerth RS, Crawford ML, Frishman LJ, Viswanathan S, Smith EL 3rd, Carter-Dawson L (2002) Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res 21:91–125

    Article  PubMed  Google Scholar 

  11. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41:741–748

    PubMed  CAS  Google Scholar 

  12. Kretschmann U, Bock M, Gockeln R, Zrenner E (2000) Clinical applications of multifocal electroretinography. Doc Ophthalmol 100:99–113

    Article  PubMed  CAS  Google Scholar 

  13. Sutter EE, Tran D (1992) The field topography of ERG components in man–I. The photopic luminance response. Vision Res 32:433–446

    Article  PubMed  CAS  Google Scholar 

  14. Chan HL, Brown B (1998) Investigation of retinitis pigmentosa using the multifocal electroretinogram. Ophthalmic Physiol Opt 18:335–350

    Article  PubMed  CAS  Google Scholar 

  15. Chan HL, Brown B (1999) Multifocal ERG changes in glaucoma. Ophthalmic Physiol Opt 19:306–316

    Article  PubMed  CAS  Google Scholar 

  16. Chan HH, Brown B (2000) Pilot study of the multifocal electroretinogram in ocular hypertension. Br J Ophthalmol 84:1147–1153

    Article  PubMed  CAS  Google Scholar 

  17. Miguel-Jimenez JM, Boquete L, Ortega S, Rodriguez-Ascariz JM, Blanco R (2010) Glaucoma detection by wavelet-based analysis of the global flash multifocal electroretinogram. Med Eng Phys 32:617–622

    Article  PubMed  CAS  Google Scholar 

  18. Sutter EE, Shimada Y, Li Y, Bearse MA (1999) Mapping inner retinal function through enhancement of adaptation components in the M-ERG. Vision Science and Its Applications, 1999 OSA Technical Digest Series, Vol 1, Washington, DC: Optical Society of America, pp 52–55

  19. Shimada Y, Bearse MA Jr, Sutter EE (2005) Multifocal electroretinograms combined with periodic flashes: direct responses and induced components. Graefes Arch Clin Exp Ophthalmol 243:132–141

    Article  PubMed  Google Scholar 

  20. Fortune B, Bearse MA Jr, Cioffi GA, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647

    PubMed  Google Scholar 

  21. Palmowski AM, Allgayer R, Heinemann-Vernaleken B, Ruprecht KW (2002) Multifocal electroretinogram with a multiflash stimulation technique in open-angle glaucoma. Ophthalmic Res 34:83–89

    Article  PubMed  CAS  Google Scholar 

  22. Chu PH, Chan HH, Brown B (2007) Luminance-modulated adaptation of global flash mfERG: fellow eye losses in asymmetric glaucoma. Invest Ophthalmol Vis Sci 48:2626–2633

    Article  PubMed  Google Scholar 

  23. Chu PH, Chan HH, Brown B (2006) Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 47:929–937

    Article  PubMed  Google Scholar 

  24. Palmowski-Wolfe AM, Todorova MG, Orguel S, Flammer J, Brigell M (2007) The 'two global flash' mfERG in high and normal tension primary open-angle glaucoma. Doc Ophthalmol 114:9–19

    Article  PubMed  Google Scholar 

  25. Shimada Y, Li Y, Bearse MA Jr, Sutter EE, Fung W (2001) Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol 85:414–419

    Article  PubMed  CAS  Google Scholar 

  26. Chu PH, Chan HH, Ng YF, Brown B, Siu AW, Beale BA, Gilger BC, Wong F (2008) Porcine global flash multifocal electroretinogram: possible mechanisms for the glaucomatous changes in contrast response function. Vision Res 48:1726–1734

    Article  PubMed  Google Scholar 

  27. Brown B (2008) Structural and functional imaging of the retina: new ways to diagnose and assess retinal disease. Clin Exp Optom 91:504–514

    Article  PubMed  Google Scholar 

  28. Sullivan-Mee M, Halverson KD, Saxon GB, Saxon MC, Shafer KM, Sterling JA, Sterling MJ, Qualls C (2005) The relationship between central corneal thickness-adjusted intraocular pressure and glaucomatous visual-field loss. Optometry 76:228–238

    Article  PubMed  Google Scholar 

  29. Hood DC, Anderson SC, Wall M, Kardon RH (2007) Structure versus function in glaucoma: an application of a linear model. Invest Ophthalmol Vis Sci 48:3662–3668

    Article  PubMed  Google Scholar 

  30. Horn FK, Link B, Mardin CY, Junemann AG, Martus P (2007) Long-term reproducibility of screening for glaucoma with FDT-perimetry. J Glaucoma 16:448–455

    Article  PubMed  Google Scholar 

  31. Bach M, Unsoeld AS, Philippin H, Staubach F, Maier P, Walter HS, Bomer TG, Funk J (2006) Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci 47:4881–4887

    Article  PubMed  Google Scholar 

  32. Johnson CA (1996) Standardizing the measurement of visual fields for clinical research: Guidelines from the Eye Care Technology Forum. Ophthalmology 103:186–189

    PubMed  CAS  Google Scholar 

  33. Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    Article  PubMed  CAS  Google Scholar 

  34. Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML (1999) Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 40:2242–2250

    PubMed  CAS  Google Scholar 

  35. Chen PP, Park RJ (2000) Visual field progression in patients with initially unilateral visual field loss from chronic open-angle glaucoma. Ophthalmology 107:1688–1692

    Article  PubMed  CAS  Google Scholar 

  36. Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF (2005) Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol 139:509–517

    Article  PubMed  Google Scholar 

  37. Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN (2005) Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 139:44–55

    Article  PubMed  Google Scholar 

  38. Sihota R, Sony P, Gupta V, Dada T, Singh R (2006) Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 47:2006–2010

    Article  PubMed  Google Scholar 

  39. Kanamori A, Nakamura M, Escano MF, Seya R, Maeda H, Negi A (2003) Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 135:513–520

    Article  PubMed  Google Scholar 

  40. Li G, Fansi AK, Boivin JF, Joseph L, Harasymowycz P (2010) Screening for glaucoma in high-risk populations using optical coherence tomography. Ophthalmology 117:453–461

    Article  PubMed  Google Scholar 

  41. Kim TW, Zangwill LM, Bowd C, Sample PA, Shah N, Weinreb RN (2007) Retinal nerve fiber layer damage as assessed by optical coherence tomography in eyes with a visual field defect detected by frequency doubling technology perimetry but not by standard automated perimetry. Ophthalmology 114:1053–1057

    Article  PubMed  Google Scholar 

  42. Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM, Tafreshi A, Zangwill LM (2006) Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol 142:576–582

    Article  PubMed  Google Scholar 

  43. Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC, Fujimoto JG, Ishikawa H (2004) Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 138:218–225

    Article  PubMed  Google Scholar 

  44. Blumenthal EZ, Williams JM, Weinreb RN, Girkin CA, Berry CC, Zangwill LM (2000) Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 107:2278–2282

    Article  PubMed  CAS  Google Scholar 

  45. Budenz DL, Fredette MJ, Feuer WJ, Anderson DR (2008) Reproducibility of peripapillary retinal nerve fiber thickness measurements with stratus OCT in glaucomatous eyes. Ophthalmology 115:661–666

    Article  PubMed  Google Scholar 

  46. Mok KH, Lee VW, So KF (2002) Retinal nerve fiber layer measurement of the Hong Kong Chinese population by optical coherence tomography. J Glaucoma 11:481–483

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Competitive Earmark Research Grant (PolyU 5384/04 M) from The Research Grants Committee of the Hong Kong SAR, the Grants for Post-Doctoral Fellowship (G-YX3C) and the Niche Areas – Glaucoma Research (J-BB76) from The Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry HL Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

HW Chu, P., Ng, Yf., To, Ch. et al. Luminance-modulated adaptation in the global flash mfERG: a preliminary study of early retinal functional changes in high-risk glaucoma patients. Graefes Arch Clin Exp Ophthalmol 250, 261–270 (2012). https://doi.org/10.1007/s00417-011-1790-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-011-1790-x

Keywords

Navigation