Skip to main content

Advertisement

Log in

Detailed analysis of retinal function and morphology in a patient with autosomal recessive bestrophinopathy (ARB)

  • Case Report
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The objective of the paper is to study the retinal microstructure and function in a patient with autosomal recessive bestrophinopathy (ARB). Retinal function and morphology assessment in a patient diagnosed with a biallelic mutation in the BEST1 gene (heterozygote mutations: Leu88del17 and A195V) included: full-field electroretinogram (ffERG) and multifocal electroretinogram (mfERG), electro-oculogram (EOG) testing, and imaging with a high-resolution Fourier-domain optical coherence tomography (Fd-OCT) system (UC Davis Medical Center; axial resolution: 4.5 μm, acquisition speed: 9 frames/s, 1,000 A-scans/frame) combined with a flexible scanning head (Bioptigen Inc.). The 11-year old asymptomatic boy showed a well-demarcated retinopathy with deposits. Functional assessment revealed normal visual acuity, reduced central mfERG responses, delayed rod and rod-cone b-wave ffERG responses, and reduced light rise in the EOG. Fd-OCT demonstrated RPE deposits, photoreceptor detachment, elongated and thickened photoreceptor outer segments, but preserved inner retinal layers. In conclusion, ARB associated retinal dystrophy shows functional and morphological changes that overlap with classic Best disease. For the first time, high-resolution imaging provided in vivo evidence of RPE and photoreceptor involvement in ARB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

EOG:

Electro-oculogram

Fd-OCT:

Fourier-domain optical coherence tomography

ffERG:

Full-field electroretinogram

ISCEV:

International Society for Clinical Electrophysiology of Vision

mfERG:

Multifocal electroretinogram

RPE:

Retinal pigment epithelium

References

  1. Burgess R, Millar ID, Leroy BP et al (2008) Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet 82:19–31. doi:10.1016/j.ajhg.2007.08.004

    Article  PubMed  CAS  Google Scholar 

  2. Petrukhin K, Koisti MJ, Bakall B et al (1998) Identification of the gene responsible for Best macular dystrophy. Nat Genet 19:241–247. doi:10.1038/915

    Article  PubMed  CAS  Google Scholar 

  3. Stohr H, Marquardt A, Rivera A et al (1998) A gene map of the Best’s vitelliform macular dystrophy region in chromosome 11q12–q13.1. Genome Res 8:48–56

    PubMed  CAS  Google Scholar 

  4. Marquardt A, Stohr H, Passmore LA et al (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7:1517–1525. doi:10.1093/hmg/7.9.1517

    Article  PubMed  CAS  Google Scholar 

  5. Marmor MF, Holder GE, Seeliger MW, Yamamoto S (2004) Standard for clinical electroretinography (2004 update). Doc Ophthalmol 108:107–114. doi:10.1023/B:DOOP.0000036793.44912.45

    Article  PubMed  Google Scholar 

  6. Hood DC, Birch DG (1996) Assessing abnormal rod photoreceptor activity with the a-wave of the electroretinogram: applications and methods. Doc Ophthalmol 92:253–267. doi:10.1007/BF02584080

    Article  PubMed  Google Scholar 

  7. Marmor MF, Zrenner E (1993) Standard for clinical electro-oculography. International society for clinical electrophysiology of vision. Arch Ophthalmol 111:601–604

    PubMed  CAS  Google Scholar 

  8. Wojtkowski M, Leitgeb R, Kowalczyk A et al (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463. doi:10.1117/1.1482379

    Article  PubMed  Google Scholar 

  9. Zawadzki RJ, Jones SM, Olivier SS et al (2005) Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in-vivo imaging. Opt Express 13:8532–8546. doi:10.1364/OPEX.13.008532

    Article  PubMed  Google Scholar 

  10. Zawadzki RJ, Fuller AR, Wiley DF et al (2007) Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets. J Biomed Opt 12:041206. doi:10.1117/1.2772658

    Article  PubMed  Google Scholar 

  11. Wabbels B, Preising MN, Kretschmann U et al (2006) Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 244:1453–1466. doi:10.1007/s00417-006-0286-6

    Article  PubMed  CAS  Google Scholar 

  12. Spaide RF, Noble K, Morgan A, Freund KB (2006) Vitelliform macular dystrophy. Ophthalmology 113:1392–1400. doi:10.1016/j.ophtha.2006.03.023

    Article  PubMed  Google Scholar 

  13. Weingeist TA, Kobrin JL, Watzke RC (1982) Histopathology of Best’s macular dystrophy. Arch Ophthalmol 100:1108–1114

    PubMed  CAS  Google Scholar 

  14. Frangieh GT, Green WR, Fine SL (1982) A histopathologic study of Best’s macular dystrophy. Arch Ophthalmol 100:1115–1121

    PubMed  CAS  Google Scholar 

  15. Mullins RF, Oh KT, Heffron E et al (2005) Late development of vitelliform lesions and flecks in a patient with Best disease: clinicopathologic correlation. Arch Ophthalmol 123:1588–1594. doi:10.1001/archopht.123.11.1588

    Article  PubMed  Google Scholar 

  16. Bakall B, Radu RA, Stanton JB et al (2007) Enhanced accumulation of A2E in individuals homozygous or heterozygous for mutations in BEST1 (VMD2). Exp Eye Res 85:34–43. doi:10.1016/j.exer.2007.02.018

    Article  PubMed  CAS  Google Scholar 

  17. Marmorstein AD, Marmorstein LY, Rayborn M et al (2000) Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci USA 97:12758–12763. doi:10.1073/pnas.220402097

    Article  PubMed  CAS  Google Scholar 

  18. Marmorstein AD, Stanton JB, Yocom J et al (2004) A model of Best vitelliform macular dystrophy in rats. Invest Ophthalmol Vis Sci 45:3733–3739. doi:10.1167/iovs.04-0307

    Article  PubMed  Google Scholar 

  19. Rosenthal R, Bakall B, Kinnick T et al (2006) Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J 20:178–180

    PubMed  CAS  Google Scholar 

  20. Wachtmeister L, Dowling JE (1978) The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 17:1176–1188

    PubMed  CAS  Google Scholar 

  21. King-Smith PE, Loffing DH, Jones R (1986) Rod and cone ERGs and their oscillatory potentials. Invest Ophthalmol Vis Sci 27:270–273

    PubMed  CAS  Google Scholar 

  22. Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685

    PubMed  Google Scholar 

  23. Holder GE (1987) Significance of abnormal pattern electroretinography in anterior visual pathway dysfunction. Br J Ophthalmol 71:166–171. doi:10.1136/bjo.71.3.166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH/NEI grant 014743 (JSW), Research to Prevent Blindness Senior Scientist Award (JSW), the Mira Godard Fund (EH) and the Albrecht Fund (JSW) in collaboration with Bioptigen, Inc. We thank Yesmino Elia for study coordination, Carmelina Trimboli-Heidler for fundus photography, and Tom Wright and Carole Panton for help with data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Gerth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerth, C., Zawadzki, R.J., Werner, J.S. et al. Detailed analysis of retinal function and morphology in a patient with autosomal recessive bestrophinopathy (ARB). Doc Ophthalmol 118, 239–246 (2009). https://doi.org/10.1007/s10633-008-9154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-008-9154-5

Keywords

Navigation