Skip to main content

Advertisement

Log in

Multifocal ERG in Subjects with a History of Retinopathy of Prematurity

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose: Investigate the function of the central retina in subjects with a history of retinopathy of prematurity (ROP). Methods: Multifocal electroretinogram (mfERG) responses to a scaled array of 103 hexagons were recorded in subjects, aged 11–23 years (N = 11), with a documented history of mild ROP. The amplitude and implicit time of the components (N1, P1, N2) of the first order kernel for six concentric rings were compared to those of control subjects (N = 9). Results: The amplitude of each component varied significantly with eccentricity in both ROP and control subjects and was significantly smaller in the ROP subjects. The discrepancy between ROP and control subjects was greatest for central rings (1–3) and smaller for peripheral rings (4–6). The slopes of the functions summarizing log response density as a function of log eccentricity (degrees visual angle) were significantly shallower in ROP subjects. The implicit time of each component was longer in ROP subjects at all eccentricities. Conclusions: ROP associated alterations in neural retinal development may underlie the subtle macular dysfunction disclosed by the mfERG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Grun (1982) ArticleTitleThe development of the vertebrate retina: a comparative survey Adv Anat Embryol Cell Biol 78 1–85 Occurrence Handle1:STN:280:BiyC38zjvFU%3D Occurrence Handle7158472

    CAS  PubMed  Google Scholar 

  2. EM Dorn L Hendrickson AE Hendrickson (1995) ArticleTitleThe appearance of rod opsin during monkey retinal development Invest Ophthalmol Vis Sci 36 IssueID13 2634–51 Occurrence Handle1:STN:280:BymD1MrgsFA%3D Occurrence Handle7499086

    CAS  PubMed  Google Scholar 

  3. D Drucker AE Henrickson (1989) ArticleTitleThe morphological development of extrafoveal human retina Invest Ophthalmol Vis Sci 30 IssueIDsuppl 226

    Google Scholar 

  4. Fulton AB, Hansen RM. Rod photoreceptor function in ROP. Mol Vision 2005 (in press).

  5. Jolesz M, Vanderveen DK, Hansen RM, Fulton A. Development of rod mediated visual thresholds in infants with a history of mild retinopathy of prematurity. Invest Ophthalmol Vis Sci 2002; ARVO Abstract 2864.

  6. DS Reisner RM Hansen O Findl RA Petersen AB Fulton (1997) ArticleTitleDark-adapted thresholds in children with histories of mild retinopathy of prematurity Invest Ophthalmol Vis Sci 38 IssueID6 1175–83 Occurrence Handle1:STN:280:ByiB1Mnns1w%3D Occurrence Handle9152237

    CAS  PubMed  Google Scholar 

  7. C Yuodelis A Hendrickson (1986) ArticleTitleA qualitative and quantitative analysis of the human fovea during development Vision Res 26 IssueID6 847–55 Occurrence Handle10.1016/0042-6989(86)90143-4 Occurrence Handle1:STN:280:BimA3MjnsVM%3D Occurrence Handle3750868

    Article  CAS  PubMed  Google Scholar 

  8. A Hendrickson C Yuodelis (1984) ArticleTitleThe morphological development of the human fovea Ophthalmology 91 603–12 Occurrence Handle1:STN:280:BiuB2s7ms1I%3D Occurrence Handle6462623

    CAS  PubMed  Google Scholar 

  9. AE Hendrickson (1994) The morphologic development of human and monkey retina DM Albert FA, Jakobiec (Eds) Principles and Practice of Ophthalmology: Basic Sciences WB Saunders Co. Philadelphia 561–77

    Google Scholar 

  10. AE Hendrickson (1994) ArticleTitlePrimate foveal development: a microcosm of current questions in neurobiology Invest Ophthalmol Vis Sci 35 3129–33 Occurrence Handle1:STN:280:ByuA387ht1Y%3D Occurrence Handle8045707

    CAS  PubMed  Google Scholar 

  11. AD Springer AE Hendrickson (2004) ArticleTitleDevelopment of the primate area of high acuity. 1. Use of finite element analysis models to identify mechanical variables affecting pit formation Visual Neurosci 21 IssueID1 53–62 Occurrence Handle1:STN:280:DC%2BD2c3jvFSmug%3D%3D

    CAS  Google Scholar 

  12. C Blakemore (1990) Maturation of mechanisms for efficient spatial vision C Blakemore (Eds) Vision: Coding and Efficiency Cambridge University Press Cambridge 256–66

    Google Scholar 

  13. AD Springer (1999) ArticleTitleNew role for the primate fovea: a retinal excavation determines photoreceptor deployment and shape Vis Neurosci 16 IssueID4 629–36 Occurrence Handle10.1017/S0952523899164034 Occurrence Handle1:STN:280:DyaK1MzlvVymuw%3D%3D Occurrence Handle10431912

    Article  CAS  PubMed  Google Scholar 

  14. S Soker S Takashima HQ Miao G Neufeld M Klagsbrun (1998) ArticleTitleNeuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor Cell 92 735–42 Occurrence Handle10.1016/S0092-8674(00)81402-6 Occurrence Handle1:CAS:528:DyaK1cXit1KlsL0%3D Occurrence Handle9529250

    Article  CAS  PubMed  Google Scholar 

  15. JM Provis T Sandercoe AE Hendrickson (2000) ArticleTitleAstrocytes and blood vessels define the foveal rim during primate retinal development Invest Ophthalmol Vis Sci 41 IssueID10 2827–36 Occurrence Handle1:STN:280:DC%2BD3cvivVWksQ%3D%3D Occurrence Handle10967034

    CAS  PubMed  Google Scholar 

  16. SJ Isenberg (1986) ArticleTitleMacular development in the premature infant Am J Ophthalmol 101 74–80 Occurrence Handle1:STN:280:BimC3c%2Fmtlc%3D Occurrence Handle3753633

    CAS  PubMed  Google Scholar 

  17. HA Mintz-Hittner DM Knight-Nanan DR Satriano FL Kretzer (1999) ArticleTitleA small foveal avascular zone may be an historic mark of prematurity Ophthalmology 106 1409–13 Occurrence Handle10.1016/S0161-6420(99)90448-7 Occurrence Handle1:STN:280:DyaK1Mzjtlarug%3D%3D Occurrence Handle10406630

    Article  CAS  PubMed  Google Scholar 

  18. A Moskowitz RM Hansen AB Fulton (2005) ArticleTitleEarly ametropia and rod cell function in retinopathy of prematurity Optometry Vision Sci. 82 307–317

    Google Scholar 

  19. DL Mayer RM Hansen BD Moore S Kim AB Fulton (2001) ArticleTitleCycloplegic refractions in healthy children, aged 1 through 48 months Arch Ophthalmol 119 1625–28 Occurrence Handle1:STN:280:DC%2BD3MnnvFSrtQ%3D%3D Occurrence Handle11709012

    CAS  PubMed  Google Scholar 

  20. EE Sutter (2001) ArticleTitleImaging visual function with the multifocal m-sequence technique Vision Res 41 IssueID10–11 1241–55 Occurrence Handle1:STN:280:DC%2BD3Mzis1Cjtw%3D%3D Occurrence Handle11322969

    CAS  PubMed  Google Scholar 

  21. EE Sutter D Tran (1992) ArticleTitleThe field topography of ERG components in man–I. The photopic luminance response Vision Res 32 IssueID3 433–46 Occurrence Handle10.1016/0042-6989(92)90235-B Occurrence Handle1:STN:280:By2B1MrlvFE%3D Occurrence Handle1604830

    Article  CAS  PubMed  Google Scholar 

  22. RT Tzekov C Gerth JS Werner (2004) ArticleTitleSenescence of human multifocal electroretinogram components: a localized approach Graefes Arch Clin Exp Ophthalmol 242 IssueID7 549–60 Occurrence Handle10.1007/s00417-004-0892-0 Occurrence Handle15085352

    Article  PubMed  Google Scholar 

  23. C Gerth EE Sutter JS Werner (2003) ArticleTitlemfERG response dynamics of the aging retina Invest Ophthalmol Vis Sci 44 IssueID10 4443–50 Occurrence Handle10.1167/iovs.02-1056 Occurrence Handle14507891

    Article  PubMed  Google Scholar 

  24. C Gerth SM Garcia L Ma JL Keltner JS Werner (2002) ArticleTitleMultifocal electroretinogram: age-related changes for different luminance levels Graefes Arch Clin Exp Ophthalmol 240 IssueID3 202–8 Occurrence Handle10.1007/s00417-002-0442-6 Occurrence Handle11935277

    Article  PubMed  Google Scholar 

  25. RM Robb (1982) ArticleTitleIncrease in retinal surface area during infancy and childhood J Ped Ophthalmol Strab 19 16–20 Occurrence Handle1:STN:280:Bi2B28fksVc%3D

    CAS  Google Scholar 

  26. D Denis O Burguiere C Burillon (1998) ArticleTitleA biometric study of the eye, orbit and face in 205 normal human fetuses Invest Ophthalmol Vis Sci 39 IssueID12 2232–38 Occurrence Handle1:STN:280:DyaK1M%2FhvFaktw%3D%3D Occurrence Handle9804130

    CAS  PubMed  Google Scholar 

  27. R Achiron D Kreiser A Achiron (2000) ArticleTitleAxial growth of the fetal eye and evaluation of the hyaloid artery in utero ultrasonographic study Prenatal Diagnosis 20 894–9 Occurrence Handle10.1002/1097-0223(200011)20:11<894::AID-PD949>3.0.CO;2-J Occurrence Handle1:STN:280:DC%2BD3M%2FntFCksA%3D%3D Occurrence Handle11113891

    Article  CAS  PubMed  Google Scholar 

  28. D Troilo HC Howland SJ Judge (1993) ArticleTitleVisual optics and retinal cone topography in the common marmoset (Callithrix jacchus) Vision Res 33 IssueID10 1301–10 Occurrence Handle1:STN:280:ByyA38risVU%3D Occurrence Handle8333154

    CAS  PubMed  Google Scholar 

  29. DC Hood LJ Frishman S Saszik S Viswanathan (2002) ArticleTitleRetinal origins of the primate multifocal ERG: implications for the human response Invest Ophthalmol Vis Sci 43 IssueID5 1673–85 Occurrence Handle11980890

    PubMed  Google Scholar 

  30. HM Hittner LM Rhodes AT McPherson (1979) ArticleTitleAnterior segment abnormalities in cicatricial retinopathy of prematurity Ophthalmol 86 803–16 Occurrence Handle1:STN:280:Bi%2BC1cbgs1Y%3D

    CAS  Google Scholar 

  31. S Ueno M Kondo N Yasurhiro H Terasaki Y Miyake (2004) ArticleTitleLuminance dependence of neural components that underlies the primate photopic electroretinogram Invest Ophthalmol Vis Sci 45 IssueID3 1033–40 Occurrence Handle10.1167/iovs.03-0657 Occurrence Handle14985327

    Article  PubMed  Google Scholar 

  32. TH Ko JG Fujimoto JS Duker LA Paunescu W Drexler CR Baumal et al. (2004) ArticleTitleComparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair Ophthalmology 111 IssueID11 2033–43 Occurrence Handle10.1016/j.ophtha.2004.05.021 Occurrence Handle15522369

    Article  PubMed  Google Scholar 

  33. Hansen RM, Fulton AB Cone cell function in children with a history of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2004; 45: Abstract 1352.

  34. J Carroll M Neitz H Hofer J Neitz DR Williams (2004) ArticleTitleFunctional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness Proc Natl Acad Sci USA 101 IssueID22 8461–6 Occurrence Handle10.1073/pnas.0401440101 Occurrence Handle1:CAS:528:DC%2BD2cXkvFOmtrs%3D Occurrence Handle15148406

    Article  CAS  PubMed  Google Scholar 

  35. J Liang DR Williams DT Miller (1997) ArticleTitleSupernormal vision and high-resolution retinal imaging through adaptive optics J Opt Soc Am A Opt Image Sci Vis 14 IssueID11 2884–92 Occurrence Handle1:STN:280:DyaK1c%2Fit1emuw%3D%3D Occurrence Handle9379246

    CAS  PubMed  Google Scholar 

  36. J Wolfing M Chung J Carroll DR Williams (2004) ArticleTitleHigh resolution imaging of cone-rod dystrophy (Abstract) J Vision 4 IssueID11 91a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne B. Fulton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulton, A.B., Hansen, R.M., Moskowitz, A. et al. Multifocal ERG in Subjects with a History of Retinopathy of Prematurity. Doc Ophthalmol 111, 7–13 (2005). https://doi.org/10.1007/s10633-005-2621-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-005-2621-3

Key words

Navigation