Skip to main content
Log in

A new large class of functions not APN infinitely often

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We show that there is no vectorial Boolean function of degree \(4e\), with some conditions on \(e\), which is APN over infinitely many extensions of its field of definition. It is a new step in the proof of the conjecture of Aubry, McGuire and Rodier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubry Y., McGuire G., Rodier F.: A few more functions that are not APN infinitely often. In: Finite Fields: Theory and Applications. Contemporary Mathematics, vol. 518, pp. 23–31. American Mathematical Society, Providence (2010). doi:10.1090/conm/518/10193.

  2. Berger T.P., Canteaut A., Charpin P., Laigle-Chapuy Y.: On almost perfect nonlinear functions over \(f^{n}_{2}\). IEEE Trans. Inform. Theory 52(9), 4160–4170 (2006). doi:10.1109/TIT.2006.880036.

    Google Scholar 

  3. Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991). doi:10.1007/BF00630563.

    Google Scholar 

  4. Bourbaki N.: Éléments de mathématique. Masson, Paris (1985). Algèbre commutative. Chapitres 5 à 7.

  5. Byrne E., McGuire G.: Quadratic binomial APN functions and absolutely irreducible polynomials. ArXiv e-prints (2008).

  6. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998). doi:10.1023/A:1008344232130.

  7. Delgado M., Janwa H.: On the conjecture on APN functions. CoRR abs/1207.5528 (2012).

  8. Dillon J.F.: APN polynomials (2009). http://mathsci.ucd.ie/~gmg/Fq9Talks/Dillon.pdf. Accessed 18 July 2013.

  9. Dobbertin H., Mills D., Muller E.N., Pott A., Willems W.: APN functions in odd characteristic. Discret. Math. 267(1–3), 95–112 (2003). Combinatorics 2000 (Gaeta).

    Google Scholar 

  10. Edel Y., Pott A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun. 3(1), 59–81 (2009). doi:10.3934/amc.2009.3.59.

  11. Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inf. Theory 52(2), 744–747 (2006). doi:10.1109/TIT.2005.862128.

    Google Scholar 

  12. Férard E., Oyono R., Rodier F.: Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents. In: Arithmetic, Geometry, Cryptography and Coding Theory. Contemporary Mathematics, vol. 574, pp. 27–36. American Mathematical Society, Providence (2012). doi:10.1090/conm/574/11423.

  13. Hernando F., McGuire G.: Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. J. Algebra 343, 78–92 (2011). doi:10.1016/j.jalgebra.2011.06.019.

  14. Janwa H., Wilson R.M.: Hyperplane sections of Fermat varieties in \(P^3\) in char 2 and some applications to cyclic codes. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (San Juan, PR, 1993). Lecture Notes in Computer Science, vol. 673, pp. 180–194. Springer, Berlin (1993). doi:10.1007/3-540-56686-4_43.

  15. Janwa H., McGuire G.M., Wilson R.M.: Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2). J. Algebra 178(2), 665–676 (1995). doi:10.1006/jabr.1995.1372.

    Google Scholar 

  16. Leducq E.: New families of APN functions in characteristic 3 or 5. In: Arithmetic, Geometry, Cryptography and Coding Theory. Contemporary Mathematics, vol. 574, pp. 115–123. American Mathematical Society, Providence (2012). doi:10.1090/conm/574/11419.

  17. Ness G.J., Helleseth T.: A new family of ternary almost perfect nonlinear mappings. IEEE Trans. Inf. Theory 53(7), 2581–2586 (2007). doi:10.1109/TIT.2007.899508.

    Google Scholar 

  18. Nyberg K.: Differentially uniform mappings for cryptography. In: Advances in Cryptology–EUROCRYPT ’93 (Lofthus, 1993). Lecture Notes in Computer Science, vol. 765, pp. 55–64. Springer, Berlin (1994). doi:10.1007/3-540-48285-7_6.

  19. Poinsot L., Pott, A.: Non-boolean almost perfect nonlinear functions on non-abelian groups. Int. J. Found. Comput. Sci. 22(6), 1351–1367 (2011). doi:10.1142/S0129054111008751.

    Google Scholar 

  20. Rodier F.: Borne sur le degré des polynômes presque parfaitement non-linéaires. In: Arithmetic, Geometry, Cryptography and Coding theory. Contemporary Mathematics, vol. 487, pp. 169–181. American Mathematical Society, Providence (2009). doi:10.1090/conm/487/09531.

  21. Rodier F.: Functions of degree 4e that are not APN infinitely often. Cryptogr. Commun. 3(4), 227–240 (2011). doi:10.1007/s12095-011-0050-6.

  22. Zha Z., Wang X.: Power functions with low uniformity on odd characteristic finite fields. Sci. China Math. 53(8), 1931–1940 (2010). doi:10.1007/s11425-010-3149-x.

  23. Zha Z., Wang X.: Almost perfect nonlinear power functions in odd characteristic. IEEE Trans. Inf. Theory 57(7), 4826–4832 (2011). doi:10.1109/TIT.2011.2145130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Caullery.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caullery, F. A new large class of functions not APN infinitely often. Des. Codes Cryptogr. 73, 601–614 (2014). https://doi.org/10.1007/s10623-014-9956-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-9956-2

Keywords

Mathematics Subject Classification

Navigation