Skip to main content
Log in

From graph states to two-graph states

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The name ‘graph state’ is used to describe a certain class of pure quantum state which models a physical structure on which one can perform measurement-based quantum computing, and which has a natural graphical description. We present the two-graph state, this being a generalisation of the graph state and a two-graph representation of a stabilizer state. Mathematically, the two-graph state can be viewed as a simultaneous generalisation of a binary linear code and quadratic Boolean function. It describes precisely the coefficients of the pure quantum state vector resulting from the action of a member of the local Clifford group on a graph state, and comprises a graph which encodes the magnitude properties of the state, and a graph encoding its phase properties. This description facilitates a computationally efficient spectral analysis of the graph state with respect to operations from the local Clifford group on the state, as all operations can be realised graphically. By focusing on the so-called local transform group, which is a size 3 cyclic subgroup of the local Clifford group over one qubit, and over n qubits is of size 3n, we can efficiently compute spectral properties of the graph state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouchet A. (1988) Transforming trees by succesive local complementations. J. Graph Theory 12: 195–207

    Article  MATH  MathSciNet  Google Scholar 

  • Bouchet A. (1988). Graphic presentation of isotropic systems. J. Combin. Theory B 45: 58–76

    Article  MATH  MathSciNet  Google Scholar 

  • Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A. (1998). Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44, 1369–1387

    Article  MATH  MathSciNet  Google Scholar 

  • Danielsen L.E.: On self-dual quantum codes, graphs, and Boolean functions. Master’s thesis, University of Bergen, March, 2005. http://arxiv.org/abs/quant-ph/050323.

  • Danielsen L.E.: Database of self-dual quantum codes. http://www.ii.uib.no/~larsed/vncorbits/ (2005).

  • Danielsen L.E., Gulliver T.A., Parker M.G.: Aperiodic propagation criteria for Boolean Functions. Inform. Comput. (2005). http://www.ii.uib.no/~matthew/apcpaper.pd.

  • Danielsen L.E., Parker M.G.: Spectral orbits and peak-to-average power ratio of Boolean Functions with respect to the \(\{I,H,N\}^{\otimes n}\) Transform. SETA’04, Sequences and their Applications, Seoul, Proceedings of SETA04, October 2004. Lecture Notes in Computer Science, Springer-Verlag, LNCS 3486, (2005). http://www.ii.uib.no/~matthew/seta04-parihn.p.

  • Danielsen L.E., Parker M.G.: On the classification of all self-dual additive codes over GF(4) of length up to 12. J. Comb. Theory Ser. A (2005). http://arxiv.org/abs/math.CO/050452.

  • Danielsen L.E., Parker M.G.: Edge local complementation and equivalence of binary linear codes. Designs, Codes and Cryptography, http://www.ii.uib.no/~matthew/pivot.pdf, January 2008 (accepted).

  • Elliot M.B., Eastin B., Caves C.M.: Graphical description of the action of clifford operators on stabilizer states. http://arxiv.org/pdf/quant-ph/0703278, 30 March (2007).

  • Glynn D.G.: On self-dual quantum codes and graphs. Submitted to the Electronic Journal of Combinatorics, http://homepage.mac.com/dglynn/quantum_files/Personal3.html,’ http://arxiv.org/pdf/quant-ph/0703278, April 2002.

  • Glynn D.G., Aaron Gulliver T., Maks J.G., Gupta M.K.: The Geometry of Additive Quantum Codes, 217 pp, Springer Lecture Notes, Feb. 2007 (submitted).

  • Gottesman D.: codes and quantum error correction. Caltech Ph.D. thesis (1997). http://arxiv.org/pdf/quant-ph/970505.

  • Grassl M., Klappenecker A., Roetteler M.: Graphs, quadratic forms, and quantum codes. Proc. IEEE Int. Symp. Inform. Theory, Lausanne, Switzerland, June 30–July 5 (2002).

  • Gross D., van den Nest M.: The LU-LC conjecture, diagonal local operations and quadratic forms over GF(2). http://arxiv.org/pdf/quant-ph/0707.4000 (2007).

  • Hein M., Dur W., Eisert J., Raussendorf R., Van den Nest M., Briegel H.-J.: In: Zoller, P., Casati, G., Shepelyansky, D., Benenti, G. (eds.). Entanglement in graph states and its applications. Quantum Computers, Algorithms and Chaos 162 International School of Physics Enrico Fermi, Varenna, Italy, (2006). http://xxx.soton.ac.uk/abs/quant-ph/060209.

  • Hein M., Eisert J., Briegel H.J.: Multi-party entanglement in graph states. Phys. Rev. A, 69(6), 062311 (2004). http://arXiv:quant-ph/030713.

    Google Scholar 

  • Höhn G.: Self-dual codes over the Kleinian four group. Math. Ann. 327(2), 227–255 (2003). http://arXiv:math.CO/000526.

    Google Scholar 

  • Ji Z., Chen J., Wei Z., Ying, M.: The LU-LC conjecture is false. http://arxiv.org/pdf/quant-ph/0709.1266 (2007).

  • Nielsen M., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000).

  • Parker M.G.: Quantum factor graphs, Ann. Telecommun. July–Aug, pp. 472–483 (2001), (originally 2nd Int. Symp. on Turbo Codes and Related Topics, Brest, France Sept 4–7, 2000), http://xxx.soton.ac.uk/ps/quant-ph/001004.

  • Parker M.G.: Generalised S-box nonlinearity. NESSIE Public Document—NES/DOC/UIB/WP5/020/A, 11 Feb, 2003, https://www.cosic.esat.kuleuven.ac.be/nessie/reports/phase2/SBoxLin.pdf.

  • Parker M.G.: Univariate and Multivariate Merit Factors. Proceedings of SETA04. Lecture Notes in Computer Science, LNCS 3486, pp. 72–100 (2005).

  • Parker M.G., Rijmen V.: The quantum entanglement of binary and bipolar sequences, short version in Sequences and Their Applications, Discrete Mathematics and Theoretical Computer Science Series, Springer-Verlag (2001) long version at http://xxx.soton.ac.uk/abs/quant-ph/?0107106 or http://www.ii.uib.no/~matthew/BergDM2.ps, June 2001.

  • Raussendorf R., Briegel H.-J.: Quantum computing via measurements only. Phys. Rev. Lett. 86, 5188 http://xxx.soton.ac.uk/abs/quant-ph/0010033, 7 Oct 2000.

  • Raussendorf R., Browne D.E., Briegel H.J. (2003). Measurement-based quantum computation with cluster states. Phys. Rev. A 68: 022312

    Article  Google Scholar 

  • Riera C., Parker M.G.: One and two-variable interlace polynomials: a spectral interpretation. International Workshop, Proceedings of WCC2005, Bergen, Norway, March 2005, Revised Selected Papers, Lecture Notes in Computer Science, LNCS 3969, pp. 397–411, March 2005.

  • Riera C.: properties of Boolean functions, graphs and graph states. Ph.D. thesis, Universidad Complutense de Madrid.

  • Riera C., Parker M.G.: On pivot orbits of Boolean functions. Proceedings of the Fourth International Workshop on Optimal Codes and Related Topics (OC 2005), Pamporovo, Bulgaria, June 2005. http://www.ii.uib.no/~matthew/2var3.ps

  • Riera C., Parker M.G.: Generalised bent criteria for boolean functions (I), IEEE Trans. Inform. Theory 52(9), 4142–4159, (2006). http://xxx.soton.ac.uk/ps/cs.IT/050204.

    Google Scholar 

  • Riera C. Parker M.G.: A generalisation of graph states to two-graph states. International Workshop on Measurement-Based Quantum Computing. St John’s College, Oxford, March, pp. 18–21 (2007).

  • Schlingemann D.: http://www.imaph.tu-bs.de/qi/problems/28.html, April 2005.

  • Schlingemann D., Werner R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65 (2002) http://xxx.soton.ac.uk/abs/quant-ph/001211.

  • Storøy D.: On Boolean functions, unitary transforms, and recursions. Master’s Thesis, the Selmer Center, Dept. of Informatics, University of Bergen, Norway, http://rasmus.uib.no/~dst033/index.html, June, 2005.

  • Van den Nest M., Dehaene J., De Moor B.: Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A 69, 022316 (2004). http://xxx.soton.ac.uk/abs/quant-ph/030815.

  • Van den Nest M., De Moor B.: Edge-local equivalence of graphs. http://uk.arxiv.org/pdf/math.CO/0510246, October, 2005.

  • Vidal G. (2000) Entanglement monotones. J. Mod. Opt. 47: 355

    MathSciNet  Google Scholar 

  • Wei T-C., Ericsson M., Goldbart P.M., Munro W.J.: Connections between relative entropy of entanglement and geometric measure of entanglement. Quant. Inform. Comput. 4, 252–272 (2004). http://xxx.soton.ac.uk/pdf/quant-ph/040500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constanza Riera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riera, C., Jacob, S. & Parker, M.G. From graph states to two-graph states. Des. Codes Cryptogr. 48, 179–206 (2008). https://doi.org/10.1007/s10623-008-9167-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-008-9167-9

Keywords

AMS Classifications

Navigation