Skip to main content
Log in

Hierarchy of graph-diagonal states based on quantum discord and entanglement classification

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

For the relative entropy-based measure of quantum discord the key idea is to find the closest classical state (CCS) for a given state ρ, which is in general a more complicated problem. In this work, we study three and four qubit graph-diagonal states and give the explicit expressions of CCS for these states. Using the CCS, we compute the quantum discord of graph-diagonal states of three and four qubit systems and show that there is a hierarchy for the quantum discord of graph-diagonal states of any three and four qubit systems. Then we classify the entanglement of graph-diagonal states of three and four qubit systems and draw the hierarchy of entanglement of these graph-diagonal states. Finally, we compare the hierarchy of quantum discord and quantum entanglement of the these graph-diagonal states and show that the hierarchy of quantum entanglement is at least in equivalence of quantum discord.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  2. O. Guhne, G. Toth, Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  5. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  6. C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, W.K. Wootters, Phys. Rev. A 59, 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, U. Sen, B. Synak-Radtke, Phys. Rev. A 71, 062307 (2005)

    Article  ADS  Google Scholar 

  8. J. Niset, N.J. Cerf, Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  9. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 017901, 88 (2001)

    Google Scholar 

  10. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Luo, Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  12. L. Mazzola, J. Piilo, S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.D. Lang, C.M. Caves, Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

  14. J. Maziero, L.C. Celeri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. F.F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  16. A. Datta, Phys. Rev. A 80, 052304 (2009)

    Article  ADS  Google Scholar 

  17. T. Werlang, G. Rigolin, Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  18. M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  19. G. Adesso, A. Datta, Phys. Rev. Lett. 105, 030501 (2010)

    Article  ADS  Google Scholar 

  20. M.A. Jafarizadeh et al., Eur. Phys. J. D 68, 136 (2014)

    Article  ADS  Google Scholar 

  21. Z. Ma, Z. Chen, F.F. Fanchini, S. Fei, Sci. Rep. 5, 10262 (2015)

    Article  ADS  Google Scholar 

  22. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. H. Kim, M.-R. Hwang, E. Jung, D.K. Park, Phys. Rev. A 81, 052325 (2010)

    Article  ADS  Google Scholar 

  24. P. Parashar, S. Rana, Phys. Rev. A 83, 032301 (2011)

    Article  ADS  Google Scholar 

  25. J. Zhang, A. Chen, Quantum Phys. Lett. 1, 2 (2012)

    Google Scholar 

  26. M. Hein et al., in Quantum Computers, Algorithms and Chaos, edited by G. Casati, D.L. Shepelyansky, P. Zoller, G. Benenti (IOS, Amsterdam, 2006)

  27. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  28. M.A. Jafarizadeh et al., Int. J. Theor. Phys. 55, 1543 (2015)

    Article  Google Scholar 

  29. R.V. Buniy, T.W. Kephart, J. Phys. A: Math. Theor. 45, 185304 (2012)

    Article  ADS  Google Scholar 

  30. O. Gühne, B. Jungnitsch, T. Moroder, Y.S. Weinstein, Phys. Rev. A 84, 052319 (2011)

    Article  ADS  Google Scholar 

  31. B. Jungnitsch, T. Moroder, O. Gühne, Phys. Rev. A 84, 032310 (2011)

    Article  ADS  Google Scholar 

  32. R.V. Buniy, T.W. Kephart, J. Phys. A: Math. Theor. 45, 182001 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarizadeh, M.A., Karimi, N., Sahlan, D.A. et al. Hierarchy of graph-diagonal states based on quantum discord and entanglement classification . Eur. Phys. J. D 71, 254 (2017). https://doi.org/10.1140/epjd/e2017-80242-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80242-3

Keywords

Navigation