Skip to main content
Log in

Hyperbaric Oxygen Ameliorated Acute Pancreatitis in Rats via the Mitochondrial Pathway

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

A Correction to this article was published on 09 May 2020

This article has been updated

Abstract

Background

Acute pancreatitis (AP) is a common disease of the digestive system. The mechanism of hyperbaric oxygen (HBO) therapy for AP is not completely clear.

Aims

This study investigated the effects of HBO in AP and whether it acts through the mitochondria-mediated apoptosis pathway.

Methods

Eighty male Sprague–Dawley rats were randomly assigned to four groups: control (8 rats), sham (24 rats), AP (24 rats), or AP + HBO (24 rats). AP was induced by ligating the pancreatic duct. The AP + HBO group was given HBO therapy starting at 6 h postinduction. Eight rats in each group were killed on days 1, 2, and 3 postinduction to assess pancreatic injury, mitochondrial membrane potential, ATP level, and expression levels of BAX, Bcl-2, caspase-3, caspase-9, and PARP in pancreatic tissue and blood levels of amylase, lipase, and pro-inflammatory cytokines.

Results

HBO therapy alleviated the severity of AP and decreased histopathological scores and levels of serum amylase, lipase, and pro-inflammatory cytokines. Compared to AP induction alone, HBO therapy increased expression of the apoptotic protein BAX, caspase-3, caspase-9, and PARP and ATP levels in tissues and decreased antiapoptotic protein Bcl-2 expression levels and the mitochondrial membrane potential on the first day; the results on the second day were partly consistent with those on the first day, while there was no obvious difference on the third day.

Conclusions

HBO therapy could induce caspase-dependent apoptosis in AP rats to alleviate pancreatitis, which was possibly triggered by mitochondrial apoptosis pathway regulation of Bcl-2 family members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 09 May 2020

    The original version of the article unfortunately contained an error in the legend of Figure��2b and 2c.

References

  1. Xiao AY, Tan ML, Wu LM, Asrani VM, Windsor JA, Yadav D. Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol. 2016;1:45–55.

    Article  Google Scholar 

  2. Lankisch PG, Apte M, Banks PA. Acute Pancreatitis. Lancet. 2015;386:85–96.

    Article  Google Scholar 

  3. Tenner S, Baillie J, DeWitt J, Vege SS. American college of gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol. 2013;108:1400–1415. https://doi.org/10.1038/ajg.2013.218.

    Article  CAS  PubMed  Google Scholar 

  4. Bhatia M. Apoptosis versus necrosis in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2004;286:G189–G196.

    Article  CAS  Google Scholar 

  5. Leindler L, Morschl É, László F, Mándi Y, Takács T, et al. Importance of cytokines, nitric oxide, and apoptosis in the pathological process of necrotizing pancreatitis in rats. Pancreas. 2004;29:157–161.

    Article  CAS  Google Scholar 

  6. Bhatia M. Apoptosis of pancreatic acinar cells in acute pancreatitis: is it good or bad? J Cell Mol Med. 2004;8:402–409.

    Article  CAS  Google Scholar 

  7. Mareninova OA, Sung KF, Hong P, et al. Cell death in pancreatitis: caspases protect from necrotizing pancreatitis. J Biol Chem. 2006;281:3370–3381.

    Article  CAS  Google Scholar 

  8. Frossard JL, Rubbia-Brandt L, Wallig MA, et al. Severe acute pancreatitis and reduced acinar cell apoptosis in the exocrine pancreas of mice deficient for the Cx32 gene. Gastroenterology. 2003;124:481–493.

    Article  CAS  Google Scholar 

  9. Tejada S, Batle JM, Ferrer MD, et al. Therapeutic effects of hyperbaric oxygen in the process of wound healing. Curr Pharm Des. 2019;25:1682–1693. https://doi.org/10.2174/1381612825666190703162648.

    Article  CAS  PubMed  Google Scholar 

  10. Halbach JL, Prieto JM, Wang AW, et al. Early hyperbaric oxygen therapy improves survival in a model of severe sepsis. Am J Physiol Regul Integr Comp Physiol. 2019;317:R160–R168.

    Article  CAS  Google Scholar 

  11. Bian H, Huang L, Li B, et al. The arousal effect of hyperbaric oxygen through orexin/hypocretin an upregulation on ketamine/ethanol-induced unconsciousness in male rats. J Neurosci Res. 2020;98:201–211. https://doi.org/10.1002/jnr.24414.

    Article  CAS  PubMed  Google Scholar 

  12. Inal V, Mas MR, Isik AT, et al. A new combination therapy in severe acute pancreatitis–hyperbaric oxygen plus 3-aminobenzamide: an experimental study. Pancreas. 2015;44:326–330.

    Article  CAS  Google Scholar 

  13. Bai X, Sun B, Pan S, et al. Down-regulation of hypoxia-inducible factor-1alpha by hyperbaric oxygen attenuates the severity of acute pancreatitis in rats. Pancreas. 2009;38:515–522.

    Article  CAS  Google Scholar 

  14. Yu QH, Zhang PX, Liu Y, Liu W, Yin N. Hyperbaric oxygen preconditioning protects the lung against acute pancreatitis induced injury via attenuating inflammation and oxidative stress in a nitric oxide dependent manner. Biochem Biophys Res Commun. 2016;478:93–100.

    Article  CAS  Google Scholar 

  15. Bai X, Song Z, Zhou Y, et al. The apoptosis of peripheral blood lymphocytes promoted by hyperbaric oxygen treatment contributes to attenuate the severity of early stage acute pancreatitis in rats. Apoptosis Int J Prog Cell Death. 2014;19:58–75. https://doi.org/10.1007/s10495-013-0911-x.

    Article  CAS  Google Scholar 

  16. Meyerholz DK, Samuel I. Morphologic characterization of early ligation-induced acute pancreatitis in rats. Am J Surg. 2007;194:652–658. https://doi.org/10.1016/j.amjsurg.2007.07.014.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg. 1992;215:44–56. https://doi.org/10.1097/00000658-199201000-00007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Richter C, Schweizer M, Cossarizza A, Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett. 1996;378:107–110. https://doi.org/10.1016/0014-5793(95)01431-4.

    Article  CAS  PubMed  Google Scholar 

  19. Cavalcante GC, Schaan AP, Cabral GF, et al. A cell’s fate: an overview of the molecular biology and genetics of apoptosis. Int J Mol Sci. 2019;. https://doi.org/10.3390/ijms20174133.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999;35:1517–1525.

    Article  CAS  Google Scholar 

  21. Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra A. Pathogenic mechanisms of pancreatitis. World J Gastrointest Pharmacol Ther. 2017;8:10–25. https://doi.org/10.4292/wjgpt.v8.i1.10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Malleo G, Mazzon E, Siriwardena AK, Cuzzocrea S. TNF-alpha as a therapeutic target in acute pancreatitis–lessons from experimental models. Sci World J. 2007;7:431–448. https://doi.org/10.1100/tsw.2007.98.

    Article  CAS  Google Scholar 

  23. Zhang FH, Sun YH, Fan KL, et al. Protective effects of heme oxygenase-1 against severe acute pancreatitis via inhibition of tumor necrosis factor-alpha and augmentation of interleukin-10. BMC Gastroenterol. 2017;17:100. https://doi.org/10.1186/s12876-017-0651-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang H, Yang W, Li Y, et al. Astaxanthin ameliorates cerulein-induced acute pancreatitis in mice. Int Immunopharmacol. 2018;56:18–28. https://doi.org/10.1016/j.intimp.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  25. Christophi C, Millar I, Nikfarjam M, Muralidharan V, Malcontenti-Wilson C. Hyperbaric oxygen therapy for severe acute pancreatitis. J Gastroenterol Hepatol. 2007;22:2042–2046.

    Article  Google Scholar 

  26. Gw B, Cs P. Pathophysiology of pulmonary complications of acute pancreatitis. World J Gastroenterol. 2006;12:7087–7096.

    Article  Google Scholar 

  27. Bhatia M, Wong FL, Cao Y, et al. Pathophysiology of acute pancreatitis. Pancreatology. 2005;5:132–144. https://doi.org/10.1159/000085265.

    Article  PubMed  Google Scholar 

  28. Koh SL, Tan JW, Muralidharan V, Christophi C. The effect of hyperbaric oxygen on apoptosis and proliferation in severe acute pancreatitis. HPB Off J Int Hepato Pancreato Biliary Assoc. 2009;11:629–637.

    Article  Google Scholar 

  29. Gukovskaya AS, Perkins PE, Zaninovic VJ, et al. Mechanisms of cell death after pancreatic duct obstruction in the opossum and the rat. Gastroenterology. 1996;110:875–884.

    Article  CAS  Google Scholar 

  30. Booth DM, Murphy JA, Mukherjee R, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology. 2011;140:2116–2125.

    Article  CAS  Google Scholar 

  31. Virág L, Szabó C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev. 2002;54:375–429.

    Article  Google Scholar 

  32. Kim JS, Qian T. Lemasters JJ Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology. 2003;124:494–503.

    Article  CAS  Google Scholar 

  33. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.

    Article  CAS  Google Scholar 

  34. Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007;14:1237–1243. https://doi.org/10.1038/sj.cdd.4402148.

    Article  CAS  PubMed  Google Scholar 

  35. Nicholson DW, Thornberry NA. Apoptosis. Life and death decisions. Science. 2003;299:214–215. https://doi.org/10.1126/science.1081274.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou Z, Daugherty WP, Sun D, et al. Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J Neurosurg. 2007;106(4):687–694.

    Article  CAS  Google Scholar 

  37. Mei LH, Yang G, Fang F. Hyperbaric oxygen combined with 5-aminolevulinic acid photodynamic therapy inhibited human squamous cell proliferation. Biol Pharm Bull. 2019;42:394–400.

    Article  CAS  Google Scholar 

  38. Harada H, Grant S. Apoptosis regulators. Rev Clin Exp Hematol. 2003;7:117–138.

    CAS  PubMed  Google Scholar 

  39. Lebedeva IV, Sarkar D, Su ZZ, et al. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003;22:8758–8773. https://doi.org/10.1038/sj.onc.1206891.

    Article  CAS  PubMed  Google Scholar 

  40. Zn O, Cl M, Sj K. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993;74:609–619.

    Article  Google Scholar 

  41. Zhang XP, Tian H, Lu B, et al. Tissue microarrays in pathological examination of apoptotic acinar cells induced by dexamethasone in the pancreas of rats with severe acute pancreatitis. Hepatobiliary Pancreat Dis Int. 2007;6:527–536.

    CAS  PubMed  Google Scholar 

  42. Inuzuka K, Unno N, Yamamoto N, et al. Effect of hyperbarically oxygenated-perfluorochemical with University of Wisconsin solution on preservation of rat small intestine using an original pressure-resistant portable apparatus. Surgery. 2007;142:57–66. https://doi.org/10.1016/j.surg.2007.03.002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Mingming Xiao for expert technical assistance on histopathological score about pancreas. We are also grateful to the Pathology Laboratory of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health, Ministry of Education, No. 1 Hospital of China Medical University, for its technical assistance.

Funding

This study was funded by the Natural Science Foundation of Liaoning Province (Grant Number 20170540526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Ge, B., Yuan, Y. et al. Hyperbaric Oxygen Ameliorated Acute Pancreatitis in Rats via the Mitochondrial Pathway. Dig Dis Sci 65, 3558–3569 (2020). https://doi.org/10.1007/s10620-020-06070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06070-3

Keywords

Navigation