Skip to main content
Log in

The apoptosis of peripheral blood lymphocytes promoted by hyperbaric oxygen treatment contributes to attenuate the severity of early stage acute pancreatitis in rats

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the immunoregulatory effects of hyperbaric oxygen (HBO) via promoting the apoptosis of peripheral blood lymphocytes (PBLs) to attenuate the severity of early stage acute pancreatitis (AP) in rats. Additionally, the persistence of the HBO treatment effects was evaluated. One hundred and twenty male Wistar rats were randomized into four groups: sham, AP, AP + normobaric oxygen (NBO), and AP + HBO. Each group consisted of 30 rats. Four hours after the induction of AP, the 30 rats in the AP + NBO group were given normobaric oxygen treatment with 100 % oxygen at 1 atm for 90 min. The 30 rats in the AP + HBO group received 100 % oxygen at 2.5 atm for 90 min, with a compression/decompression time of 15 min. The 30 rats in the AP group remained untreated. At 6, 12, and 24 h after the induction of AP, surviving rats from each group were sacrificed, and the blood and tissue samples were collected for the following measurements: the partial pressure of oxygen (PaO2) and oxygen saturation (SaO2) of the arterial blood, the levels of serum amylase, lipase, interleukin-2 (IL-2), interferon-γ (IFN-γ), interleukin-10 (IL-10), hepatocyte growth factor (HGF), and reactive oxygen species (ROS), and the mitochondrial membrane potential (∆Ψm) of the PBLs. The expression levels of procaspase-3, caspase-3, procaspase-9, and caspase-9 were also evaluated in the PBLs. Additionally, the apoptosis of PBLs was assessed, and the pancreatic tissues were subjected to a histopathological analysis by pathological grading and scoring. The histopathology of the lung, liver, kidney, duodenum, and heart was also analyzed at 12 h after the induction of AP. Significant differences were found at 6 and 12 h after AP induction. The HBO treatment significantly elevated the PaO2 and SaO2 levels, and the ROS levels in the PBLs. Additionally, HBO downregulated the levels of amylase and lipase. The HBO treatment also reduced the ∆Ψm levels, upregulated the expression of caspase-3 and caspase-9, and increased the apoptosis rate of the PBLs. Moreover, the HBO treatment decreased the serum concentrations of IL-2, IFN-γ and HGF, and reduced the pathological scores of the pancreatic tissue. The histopathological changes of the lung, liver, kidney, duodenum, and heart were also improved. A significant elevation of IL-10 occurred only at the 12-h time point. However, no obvious differences were found at the 24-h time point. This study demonstrated that the HBO treatment can promote the apoptosis of PBLs via a mitochondrial-dependent pathway and inhibit the inflammatory response. These immunoregulatory effects may play an important therapeutic role in attenuating the severity of early stage AP. The repeated administration of HBO or the use of HBO in combination with other approaches may further improve outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lund H, Tønnesen H, Tønnesen MH, Olsen O (2006) Long-term recurrence and death rates after acute pancreatitis. Scand J Gastroenterol 41(2):234–238

    PubMed  Google Scholar 

  2. Sah RP, Saluja A (2011) Molecular mechanisms of pancreatic injury. Curr Opin Gastroenterol 27(5):444–451

    PubMed Central  PubMed  Google Scholar 

  3. Sah RP, Dawra RK, Saluja AK (2013) New insights into the pathogenesis of pancreatitis. Curr Opin Gastroenterol 29(5):523–530

    CAS  PubMed  Google Scholar 

  4. Thrower EC, Gorelick FS, Husain SZ (2010) Molecular and cellular mechanisms of pancreatic injury. Curr Opin Gastroenterol 26(5):484–489

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Waldthaler A, Schütte K, Malfertheiner P (2010) Causes and mechanisms in acute pancreatitis. Dig Dis 28(2):364–372

    CAS  PubMed  Google Scholar 

  6. Sherwood MW, Prior IA, Voronina SG, Barrow SL, Woodsmith JD, Gerasimenko OV, Petersen OH, Tepikin AV (2007) Activation of trypsinogen in large endocytic vacuoles of pancreatic acinar cells. Proc Natl Acad Sci USA 104(13):5674–5679

    CAS  PubMed  Google Scholar 

  7. van Acker GJ, Perides G, Steer ML (2006) Co-localization hypothesis: a mechanism for the intrapancreatic activation of digestive enzymes during the early phases of acute pancreatitis. World J Gastroenterol 12(13):1985–1990

    PubMed  Google Scholar 

  8. Gaiser S, Daniluk J, Liu Y, Tsou L, Chu J, Lee W, Longnecker DS, Logsdon CD, Ji B (2011) Intracellular activation of trypsinogen in transgenic mice induces acute but not chronic pancreatitis. Gut 60(10):1379–1388

    CAS  PubMed  Google Scholar 

  9. Van Acker GJ, Weiss E, Steer ML, Perides G (2007) Cause-effect relationships between zymogen activation and other early events in secretagogue-induced acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 292(6):1738–1746

    Google Scholar 

  10. Gea-Sorlí S, Closa D (2010) Role of macrophages in the progression of acute pancreatitis. World J Gastrointest Pharmacol Ther 1(5):107–111

    PubMed Central  PubMed  Google Scholar 

  11. Kylänpää ML, Repo H, Puolakkainen PA (2010) Inflammation and immunosuppression in severe acute pancreatitis. World J Gastroenterol 16(23):2867–2872

    PubMed  Google Scholar 

  12. Shi C, Zhao X, Lagergren A, Sigvardsson M, Wang X, Andersson R (2006) Immune status and inflammatory response differ locally and systemically in severe acute pancreatitis. Scand J Gastroenterol 41(4):472–480

    CAS  PubMed  Google Scholar 

  13. Pereda J, Sabater L, Aparisi L, Escobar J, Sandoval J, Viña J, López-Rodas G, Sastre J (2006) Interaction between cytokines and oxidative stress in acute pancreatitis. Curr Med Chem 13(23):2775–2787

    CAS  PubMed  Google Scholar 

  14. Halonen KI, Pettilä V, Leppäniemi AK, Kemppainen EA, Puolakkainen PA, Haapiainen RK (2002) Multiple organ dysfunction associated with severe acute pancreatitis. Crit Care Med 30(6):1274–1279

    PubMed  Google Scholar 

  15. Malmstrøm ML, Hansen MB, Andersen AM, Ersbøll AK, Nielsen OH, Jørgensen LN, Novovic S (2012) Cytokines and organ failure in acute pancreatitis: inflammatory response in acute pancreatitis. Pancreas 41(2):271–277

    PubMed  Google Scholar 

  16. Pandol SJ, Saluja AK, Imrie CW, Banks PA (2007) Acute pancreatitis: bench to the bedside. Gastroenterology 132(3):1127–1151

    CAS  PubMed  Google Scholar 

  17. Cuthbertson CM, Christophi C (2006) Potential effects of hyperbaric oxygen therapy in acute pancreatitis. ANZ J Surg 76(7):625–630

    PubMed  Google Scholar 

  18. Pannala R, Kidd M, Modlin IM (2009) Acute pancreatitis: a historical perspective. Pancreas 38(4):355–366

    PubMed  Google Scholar 

  19. Mahajan UM, Gupta C, Wagh PR, Karpe PA, Tikoo K (2011) Alteration in inflammatory/apoptotic pathway and histone modifications by nordihydroguaiaretic acid prevents acute pancreatitis in swiss albino mice. Apoptosis 16(11):1138–1149

    CAS  PubMed  Google Scholar 

  20. Minutoli L, Squadrito F, Nicotina PA, Giuliani D, Ottani A, Polito F, Bitto A, Irrera N, Guzzo G, Spaccapelo L, Fazzari C, Macrì A, Marini H, Guarini S, Altavilla D (2011) Melanocortin 4 receptor stimulation decreases pancreatitis severity in rats by activation of the cholinergic anti-inflammatory pathway. Crit Care Med 39(5):1089–1096

    CAS  PubMed  Google Scholar 

  21. Shen Y, Cui N, Miao B, Zhao E (2011) Immune dysregulation in patients with severe acute pancreatitis. Inflammation 34(1):36–42

    CAS  PubMed  Google Scholar 

  22. Masamune A, Shimosegawa T (2004) Anti-cytokine therapy for severe acute pancreatitis. Nihon Rinsho 62(11):2116–2121

    PubMed  Google Scholar 

  23. Liu Z, Shen Y, Cui N, Yang J (2010) Clinical observation of immunity for severe acute pancreatitis. Inflammation 34(5):426–431

    Google Scholar 

  24. Dambrauskas Z, Giese N, Gulbinas A, Giese T, Berberat PO, Pundzius J, Barauskas G, Friess H (2010) Different profiles of cytokine expression during mild and severe acute pancreatitis. World J Gastroenterol 16(15):1845–1853

    CAS  PubMed  Google Scholar 

  25. Pietruczuk M, Dabrowska MI, Wereszczynska-Siemiatkowska U, Dabrowski A (2006) Alteration of peripheral blood lymphocyte subsets in acute Pancreatitis. World J Gastroenterol 12(33):5344–5351

    CAS  PubMed  Google Scholar 

  26. Curley PJ, McMahon MJ, Lancaster F, Banks RE, Barclay GR, Shefta J, Boylston AW, Whicher JT (1993) Reduction in circulating levels of CD4-positive lymphocytes in acute pancreatitis: relationship to endotoxin, interleukin-6 and disease severity. Br J Surg 80(10):1312–1315

    CAS  PubMed  Google Scholar 

  27. Yao W, Zhu Q, Yuan Y, Qiao M, Zhang Y, Zhai Z (2007) Thymosin alpha 1 improves severe acute pancreatitis in rats via regulation of peripheral T cell number and cytokine serum level. J Gastroenterol Hepatol 22(11):1866–1871

    CAS  PubMed  Google Scholar 

  28. Demols A, Le Moine O, Desalle F, Quertinmont E, Van Laethem JL, Devière J (2000) CD4(+) T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology 118(3):582–590

    CAS  PubMed  Google Scholar 

  29. Weaver LK (2011) Hyperbaric oxygen in the critically ill. Crit Care Med 39(7):1784–1791

    CAS  PubMed  Google Scholar 

  30. Bitterman H (2009) Bench to beside review: oxygen as a drug. Crit Care 13(1):205

    PubMed  Google Scholar 

  31. Hampson NB, Piantadosi CA, Thom SR, Weaver LK (2012) Practice recommendations in the diagnosis, management, and prevention of carbon monoxide poisoning. Am J Respir Crit Care Med 186(11):1095–1101

    CAS  PubMed  Google Scholar 

  32. Van Meter KW (2012) The effect of hyperbaric oxygen on severe anemia. Undersea Hyperb Med 39(5):937–942

    PubMed  Google Scholar 

  33. Tibbles PM, Edelsberg JS (1996) Hyperbaric-oxygen therapy. N Engl J Med 334(25):1642–1648

    CAS  PubMed  Google Scholar 

  34. Chen SY, Chen YC, Wang JK, Hsu HP, Ho PS, Chen YC, Sytwu HK (2003) Early hyperbaric oxygen therapy attenuates disease severity in lupus-prone autoimmune (NZB × NZW) F1 mice. Clin Immunol 108(2):103–110

    CAS  PubMed  Google Scholar 

  35. Savva-Bordalo J, Pinho Vaz C, Sousa M, Branca R, Campilho F, Resende R, Baldaque I, Camacho O, Campos A (2012) Clinical effectiveness of hyperbaric oxygen therapy for BK-virus-associated hemorrhagic cystitis after allogeneic bone marrow transplantation. Bone Marrow Transplant 7(8):1095–1098

    Google Scholar 

  36. MacKenzie DA, Sollinger HW, Hullett DA (2003) Decreased immunogenicity of human fetal pancreas allografts following hyperbaric oxygen culture. Transplant Proc 35(4):1499–1502

    CAS  PubMed  Google Scholar 

  37. Fodor L, Ramon Y, Meilik B, Carmi N, Shoshani O, Ullmann Y (2006) Effect of hyperbaric oxygen on survival of composite grafts in rats. Scand J Plast Reconstr Surg Hand Surg 40(5):257–260

    PubMed  Google Scholar 

  38. Al-Waili NS, Butler GJ, Petrillo RL, Carrey Z, Hamilton RW (2006) Hyperbaric oxygen and lymphoid system function: a review supporting possible intervention in tissue transplantation. Technol Health Care 14(6):489–498

    PubMed  Google Scholar 

  39. Kudchodkar B, Jones H, Simecka J, Dory L (2008) Hyperbaric oxygen treatment attenuates the pro-inflammatory and immune responses in apolipoprotein E knockout mice. Clin Immunol 128(3):435–441

    CAS  PubMed Central  PubMed  Google Scholar 

  40. MacKenzie DA, Sollinger HW, Hullett DA (2000) Role of CD4+ regulatory T cells in hyperbaric oxygen-mediated immune nonresponsiveness. Hum Immunol 61(12):1320–1331

    CAS  PubMed  Google Scholar 

  41. Ganguly BJ, Tonomura N, Benson RM, Osborne BA, Granowitz EV (2002) Hyperbaric oxygen enhances apoptosis in hematopoietic cells. Apoptosis 7(6):499–510

    CAS  PubMed  Google Scholar 

  42. Buras JA, Holt D, Orlow D, Belikoff B, Pavlides S, Reenstra WR (2006) Hyperbaric oxygen protects from sepsis mortality via an interleukin-10-dependent mechanism. Crit Care Med 34(10):2624–2629

    CAS  PubMed  Google Scholar 

  43. Rinaldi B, Cuzzocrea S, Donniacuo M, Capuano A, Di Palma D, Imperatore F, Mazzon E, Di Paola R, Sodano L, Rossi F (2011) Hyperbaric oxygen therapy reduces the toll-like receptor signaling pathway in multiple organ failures. Intensive Care Med 37(7):1110–1119

    CAS  PubMed  Google Scholar 

  44. Chen HM, Shyr MH, Ueng SW, Chen MF (1998) Hyperbaric oxygen therapy attenuates pancreatic microcirculatory derangement and lung edema in an acute experimental pancreatitis model in rats. Pancreas 17(1):44–49

    CAS  PubMed  Google Scholar 

  45. Cuthbertson CM, Su KH, Muralidharan V, Millar I, Malcontenti-Wilson C, Christophi C (2008) Hyperbaric oxygen improves capillary morphology in severe acute pancreatitis. Pancreas 36(1):70–75

    CAS  PubMed  Google Scholar 

  46. Comert B, Isik AT, Aydin S, Bozoglu E, Unal B, Deveci S, Mas N, Cinar E, Mas MR (2007) Combination of allopurinol and hyperbaric oxygen therapy: a new treatment in experimental acute necrotizing pancreatitis? World J Gastroenterol 13(46):6203–6207

    CAS  PubMed  Google Scholar 

  47. Onur E, Paksoy M, Baca B, Akoglu H (2012) Hyperbaric oxygen and N-acetylcysteine treatment in l-arginine-induced acute pancreatitis in rats. J Invest Surg 25(1):20–28

    PubMed  Google Scholar 

  48. Balkan A, Balkan M, Yasar M, Korkmaz A, Erdem O, Kiliç S, Kutsal O, Bilgic H (2006) Pulmonary protective effects of hyberbaric oxygen and N-acetylcysteine treatment in necrotizing pancreatitis. Physiol Res 55(1):25–31

    CAS  PubMed  Google Scholar 

  49. Isik AT, Mas MR, Comert B, Yasar M, Korkmaz A, Akay C, Deveci S, Tasci I, Mas N, Ates Y, Kocar IH (2004) The effect of combination therapy of hyperbaric oxygen, meropenem, and selective nitric oxide synthase inhibitor in experimental acute pancreatitis. Pancreas 28(1):53–57

    CAS  PubMed  Google Scholar 

  50. Yasar M, Yildiz S, Mas R, Dundar K, Yildirim A, Korkmaz A, Akay C, Kaymakcioglu N, Ozisik T, Sen D (2003) The effect of hyperbaric oxygen treatment on oxidative stress in experimental acute necrotizing pancreatitis. Physiol Res 52(1):111–116

    CAS  PubMed  Google Scholar 

  51. Yu X, Li YG, He XW, Li XR, Din BN, Gan Y, Xu M (2009) Hyperbaric oxygen reduces inflammatory response in acute pancreatitis by inhibiting NF-kappaB activation. Eur Surg Res 42(2):130–135

    CAS  PubMed  Google Scholar 

  52. Mas N, Isik AT, Mas MR, Comert B, Tasci I, Deveci S, Ozyurt M, Ates Y, Yamanel L, Doruk H, Yener N (2005) Hyperbaric oxygen-induced changes in bacterial translocation and acinar ultrastructure in rat acute necrotizing pancreatitis. J Gastroenterol 40(10):980–986

    PubMed  Google Scholar 

  53. Festugato M, Coelho CP, Fiedler G, Machado FP, Gonçalves MC, Bassani FR, Pierezan PH, Osvaldt AB, Rohde L (2008) Hyperbaric oxygen therapy effects on tissue lesions in acute pancreatitis. Experimental study in rats. JOP 9(3):275–282

    PubMed  Google Scholar 

  54. Nikfarjam M, Cuthbertson CM, Malcontenti-Wilson C, Muralidharan V, Millar I, Christophi C (2007) Hyperbaric oxygen therapy reduces severity and improves survival in severe acute pancreatitis. J Gastrointest Surg 11(8):1008–1015

    PubMed  Google Scholar 

  55. Koh SL, Tan JW, Muralidharan V, Christophi C (2009) The effect of hyperbaric oxygen on apoptosis and proliferation in severe acute pancreatitis. HPB (Oxford) 11(8):629–637

    Google Scholar 

  56. Christophi C, Millar I, Nikfarjam M, Muralidharan V, Malcontenti-Wilson C (2007) Hyperbaric oxygen therapy for severe acute pancreatitis. J Gastroenterol Hepatol 22(11):2042–2046

    PubMed  Google Scholar 

  57. Bai X, Sun B, Pan S, Jiang H, Wang F, Krissansen GW, Sun X (2009) Down-regulation of hypoxia-inducible factor-1 alpha by hyperbaric oxygen attenuates the severity of acute pancreatitis in rats. Pancreas 38(5):515–522

    CAS  PubMed  Google Scholar 

  58. Chi DS, Harris NS (1978) A simple method for the isolation of murine peripheral blood lymphocytes. J Immunol Methods 19(2–3):169–172

    CAS  PubMed  Google Scholar 

  59. Islam A (1995) A new, fast and convenient method for layering blood or bone marrow over density gradient medium. J Clin Pathol 48(7):686–688

    CAS  PubMed  Google Scholar 

  60. Kojima H, Sakurai K, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Akaike T, Maeda H, Nagano T (1997) Development of a fluorescent indicator for the bioimaging of nitric oxide. Biol Pharm Bull 20(12):1229–1232

    CAS  PubMed  Google Scholar 

  61. Koppikar SJ, Choudhari AS, Suryavanshi SA, Kumari S, Chattopadhyay S, Kaul-Ghanekar R (2010) Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer 10:210

    PubMed Central  PubMed  Google Scholar 

  62. Chen H, Sun B, Wang S, Pan S, Gao Y, Bai X, Xue D (2010) Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-kappa B. J Cancer Res Clin Oncol 136(6):897–903

    CAS  PubMed  Google Scholar 

  63. Jiang H, Meng F, Li W, Tong L, Qiao H, Sun X (2007) Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery 141(1):32–40

    PubMed  Google Scholar 

  64. Ueda T, Takeyama Y, Hori Y, Nishikawa J, Yamamoto M, Saitoh Y (1997) Hepatocyte growth factor in assessment of acute pancreatitis: comparison with C-reactive protein and interleukin-6. J Gastroenterol 32(1):63–70

    CAS  PubMed  Google Scholar 

  65. Schmidt J, Rattner DW, Lewandrowski K, Compton CC, Mandavilli U, Knoefel WT, Warshaw AL (1992) A better model of acute pancreatitis for evaluating therapy. Ann Surg 215(1):44–56

    CAS  PubMed  Google Scholar 

  66. Ramudo L, De Dios I, Yubero S, Vicente S, Manso MA (2007) ICAM-1 and CD11b/CD18 expression during acute pancreatitis induced by bile-pancreatic duct obstruction: effect of N-acetylcysteine. Exp Biol Med (Maywood) 232(6):737–743

    CAS  Google Scholar 

  67. Binker MG, Binker-Cosen AA, Gaisano HY, Cosen-Binker LI (2008) Inhibition of Rac1 decreases the severity of pancreatitis and pancreatitis-associated lung injury in mice. Exp Physiol 93(10):1091–1103

    CAS  PubMed  Google Scholar 

  68. Shi C, Zhao X, Wang X, Andersson R (2005) Role of nuclear factor-kappa B, reactive oxygen species and cellular signaling in the early phase of acute pancreatitis. Scand J Gastroenterol 40(1):103–108

    CAS  PubMed  Google Scholar 

  69. Kubin AM, Skoumal R, Tavi P, Kónyi A, Perjés A, Leskinen H, Ruskoaho H, Szokodi I (2011) Role of reactive oxygen species in the regulation of cardiac contractility. J Mol Cell Cardiol 50(5):884–893

    CAS  PubMed  Google Scholar 

  70. Huang M, Whang P, Chodaparambil JV, Pollyea DA, Kusler B, Xu L, Felsher DW, Mitchell BS (2011) Reactive oxygen species regulate nucleostemin oligomerization and protein degradation. J Biol Chem 286(13):11035–11046

    CAS  PubMed  Google Scholar 

  71. Guachalla LM, Rudolph KL (2010) ROS induced DNA damage and checkpoint responses: influences on aging? Cell Cycle 9(20):4058–4060

    CAS  PubMed  Google Scholar 

  72. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922

    CAS  PubMed  Google Scholar 

  73. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    CAS  PubMed  Google Scholar 

  74. Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE (2008) Targeting mitochondria. Acc Chem Res 41(1):87–97

    CAS  PubMed  Google Scholar 

  75. Caroppi P, Sinibaldi F, Fiorucci L, Santucci R (2009) Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein. Curr Med Chem 16(31):4058–4065

    CAS  PubMed  Google Scholar 

  76. Kuribayashi K, Mayes PA, El-Deiry WS (2006) What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol Ther 5(7):763–765

    CAS  PubMed  Google Scholar 

  77. Uysal B, Yasar M, Ersoz N, Coskun O, Kilic A, Cayc T, Kurt B, Oter S, Korkmaz A, Guven A (2010) Efficacy of hyperbaric oxygen therapy and medical ozone therapy in experimental acute necrotizing pancreatitis. Pancreas 39(1):9–15

    CAS  PubMed  Google Scholar 

  78. Calzia E, Oter S, Muth CM, Radermacher P (2006) Evolving career of hyperbaric oxygen in sepsis: from augmentation of oxygen delivery to the modulation of the immune response. Crit Care Med 34(10):2693–2695

    PubMed  Google Scholar 

  79. Weber SU, Koch A, Siekmann U, Neitzel C, Stüber F, Hoeft A, Schröder S (2009) A single exposure to hyperbaric oxygen increases levels of circulating nucleosomes but does not induce mononuclear cell apoptosis in divers. Undersea Hyperb Med 36(2):117–1125

    CAS  PubMed  Google Scholar 

  80. Madden LA, Vince RV, Laden G (2011) The effect of acute hyperoxia in vivo on NF kappa B expression in human PBMC. Cell Biochem Funct 29(1):71–73

    CAS  PubMed  Google Scholar 

  81. Liu W, Zhang J, Ma C, Liu Y, Li R, Sun X, Zhang J, Xu WG (2009) Dual effects of hyperbaric oxygen on proliferation and cytotoxic T lymphocyte activity of rat splenic lymphocytes. Undersea Hyperb Med 36(3):155–160

    CAS  PubMed  Google Scholar 

  82. Malleo G, Mazzon E, Genovese T, Di Paola R, Muia C, Crisafulli C, Siriwardena AK, Cuzzocrea S (2008) Effects of thalidomide in a mouse model of cerulein-induced acute pancreatitis. Shock 29(1):89–97

    CAS  PubMed  Google Scholar 

  83. Norman J, Franz M, Messina J, Riker A, Fabri PJ, Rosemurgy AS, Gower WR Jr (1995) Interleukin-1 receptor antagonist decreases severity of experimental acute pancreatitis. Surgery 117(6):648–655

    CAS  PubMed  Google Scholar 

  84. Ozkan E, Akyuz C, Sehirli AO, Topaloglu U, Ercan F, Sener G (2010) Montelukast, a selective cysteinyl leukotriene receptor 1 antagonist, reduces cerulein-induced pancreatic injury in rats. Pancreas 39(7):1041–1046

    PubMed  Google Scholar 

  85. Zhou GX, Zhu XJ, Ding XL, Zhang H, Chen JP, Qiang H, Zhang HF, Wei Q (2010) Protective effects of MCP-1 inhibitor on a rat model of severe acute pancreatitis. Hepatobiliary Pancreat Dis Int 9(2):201–207

    CAS  PubMed  Google Scholar 

  86. Benson RM, Minter LM, Osborne BA, Granowitz EV (2003) Hyperbaric oxygen inhibits stimulus-induced proinflammatory cytokine synthesis by human blood-derived monocyte-macrophages. Clin Exp Immunol 134(1):57–62

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Weber SU, Koch A, Kankeleit J, Schewe JC, Siekmann U, Stüber F, Hoeft A, Schröder S (2009) Hyperbaric oxygen induces apoptosis via a mitochondrial mechanism. Apoptosis 14(1):97–107

    CAS  PubMed  Google Scholar 

  88. Tripathi P, Hildeman D (2004) Sensitization of T cells to apoptosis—a role for ROS? Apoptosis 9(5):515–523

    CAS  PubMed  Google Scholar 

  89. Bitterman N, Bitterman H, Kinarty A, Melamed Y, Lahat N (1993) Effect of a single exposure to hyperbaric oxygen on blood mononuclear cells in human subjects. Undersea Hyperb Med 20(3):197–204

    CAS  PubMed  Google Scholar 

  90. Bitterman N, Lahat N, Rosenwald T, Kinarty A, Melamed Y, Bitterman H (1994) Effect of hyperbaric oxygen on tissue distribution of mononuclear cell subsets in the rat. J Appl Physiol 77(5):2355–2359

    CAS  PubMed  Google Scholar 

  91. Sandstrom PA, Buttke TM (1993) Autocrine production of extracellular catalase prevents apoptosis of the human CEM T-cell line in serum-free medium. Proc Natl Acad Sci USA 90(10):4708–4712

    CAS  PubMed  Google Scholar 

  92. Sandstrom PA, Mannie MD, Buttke TM (1994) Inhibition of activation-induced death in T cell hybridomas by thiol antioxidants: oxidative stress as a mediator of apoptosis. J Leukoc Biol 55(2):221–226

    CAS  PubMed  Google Scholar 

  93. Lee DH, Park T, Kim HW (2006) Induction of apoptosis by disturbing mitochondrial-membrane potential and cleaving PARP in Jurkat T cells through treatment with acetoxyscirpenol mycotoxins. Biol Pharm Bull 29(4):648–654

    CAS  PubMed  Google Scholar 

  94. Rajasagi M, von Au A, Singh R, Hartmann N, Zöller M, Marhaba R (2010) Anti-CD44 induces apoptosis in T lymphoma via mitochondrial depolarization. J Cell Mol Med 14(6B):1453–1467

    CAS  PubMed  Google Scholar 

  95. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    CAS  PubMed  Google Scholar 

  96. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342(6248):440–443

    CAS  PubMed  Google Scholar 

  97. Vilá MR, Nakamura T, Real FX (1995) Hepatocyte growth factor is a potent mitogen for normal human pancreas cells in vitro. Lab Invest 73(3):409–418

    PubMed  Google Scholar 

  98. Kiehne K, Herzig KH, Fölsch UR (1997) c-Met expression in pancreatic cancer and effects of hepatocyte growth factor on pancreatic cancer cell growth. Pancreas 15(1):35–40

    CAS  PubMed  Google Scholar 

  99. Ueda T, Takeyama Y, Toyokawa A, Kishida S, Yamamoto M, Saitoh Y (1996) Significant elevation of serum human hepatocyte growth factor levels in patients with acute pancreatitis. Pancreas 12(1):76–83

    CAS  PubMed  Google Scholar 

  100. Warzecha Z, Dembiński A, Konturek PC, Ceranowicz P, Konturek SJ, Tomaszewska R, Schuppan D, Stachura J, Nakamura T (2001) Hepatocyte growth factor attenuates pancreatic damage in caerulein-induced pancreatitis in rats. Eur J Pharmacol 430(1):113–121

    CAS  PubMed  Google Scholar 

  101. Warzecha Z, Dembiński A, Ceranowicz P, Konturek S, Tomaszewska R, Stachura J, Nakamura T, Konturek PC (2004) Inhibition of cyclooxygenase-2 reduces the protective effect of hepatocyte growth factor in experimental pancreatitis. Eur J Pharmacol 486(1):107–119

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the technical advice of Liu Meina from the Department of Biostatistics of Public Health of Harbin Medical University in Harbin, China. Also, Dr. Zhu Hong, from the Department of Pathology at the First Affiliated Hospital at Harbin Medical University in Harbin, China assisted us with the evaluation of pathological scores from pancreatic tissues. Finally, we thank Dr. Fu Lu and Dr. Teng Yueqiu of the Department of Medical Laboratory at the First Affiliated Hospital of Harbin Medical University in Harbin, China for their ongoing supports of this research. This paper was supported by grants from the National Natural Scientific Foundation of China (No: 30901437, 81170431, 81100314, 81101799), the Chinese Research Fund for the Doctoral Program of Higher Education (No: 20102307120002), the Chinese Natural Science Foundation of Heilongjiang Province (No: QC08C63), the Chinese Foundation for University Key Teacher of Heilongjiang Province (No: 1155G35), the Chinese Innovative Science and Technology Research Fund of Harbin (No: 2010RFQQS059), the Postdoctoral Science Foundation of the Heilongjiang Province of China and the Doctoral Science Foundation of the First Affiliated Hospital of Harbin Medical University.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, X., Song, Z., Zhou, Y. et al. The apoptosis of peripheral blood lymphocytes promoted by hyperbaric oxygen treatment contributes to attenuate the severity of early stage acute pancreatitis in rats. Apoptosis 19, 58–75 (2014). https://doi.org/10.1007/s10495-013-0911-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0911-x

Keywords

Navigation