Skip to main content

Advertisement

Log in

Cholecystokinin Receptor Antagonist Therapy Decreases Inflammation and Fibrosis in Chronic Pancreatitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Chronic pancreatitis is associated with recurrent inflammation, pain, fibrosis, and loss of exocrine and endocrine pancreatic function and risk of cancer. We hypothesized that activation of the CCK receptor contributes to pancreatitis and blockade of this pathway would improve chronic pancreatitis.

Methods

Two murine models were used to determine whether CCK receptor blockade with proglumide could prevent and reverse histologic and biochemical features of chronic pancreatitis: the 6-week repetitive chronic cerulein injection model and the modified 75% choline-deficient ethionine (CDE) diet. In the CDE-fed model, half the mice received water supplemented with proglumide, for 18 weeks. After chronic pancreatitis was established in the cerulein model, half the mice were treated with proglumide and half with water. Histology was scored in a blinded fashion for inflammation, fibrosis and acinar ductal metaplasia (ADM) and serum lipase levels were measured. RNA was extracted and examined for differentially expressed fibrosis genes.

Results

Proglumide therapy decreased pancreatic weight in the CDE diet study and the cerulein-induced chronic pancreatitis model. Fibrosis, inflammation, and ADM scores were significantly reduced in both models. Lipase values improved with proglumide but not in controls in both models. Proglumide decreased pancreas mRNA expression of amylase, collagen-4, and TGFβR2 gene expression by 44, 38, and 25%, respectively, compared to control mice.

Conclusion

New strategies are needed to decreased inflammation and reduce fibrosis in chronic pancreatitis. CCK receptor antagonist therapy may improve chronic pancreatitis by reversing fibrosis and inflammation. The decrease in ADM may reduce the risk of the development of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADM:

Acinar ductal metaplasia

CCK:

Cholecystokinin

CDE:

Choline-deficient ethionine

MMP:

Matrix metalloproteinase

PSC:

Pancreatic stellate cells

References

  1. Whitcomb DC, Frulloni L, Garg P, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016;16:218–224.

    PubMed  Google Scholar 

  2. Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1252–1261.

    PubMed  Google Scholar 

  3. Conwell DL, Wu BU. Chronic pancreatitis: making the diagnosis. Clin Gastroenterol Hepatol. 2012;10:1088–1095.

    PubMed  Google Scholar 

  4. Dhar P, Kalghatgi S, Saraf V. Pancreatic cancer in chronic pancreatitis. Indian J Surg Oncol. 2015;6:57–62.

    PubMed  PubMed Central  Google Scholar 

  5. Kirkegard J, Mortensen FV, Cronin-Fenton D. Chronic pancreatitis and pancreatic cancer risk: a systematic review and meta-analysis. Am J Gastroenterol. 2017;112:1366–1372.

    PubMed  Google Scholar 

  6. Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–2921.

    PubMed  CAS  Google Scholar 

  7. Masamune A, Watanabe T, Kikuta K, et al. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol. 2009;7:S48–S54.

    PubMed  CAS  Google Scholar 

  8. Trautwein C, Friedman SL, Schuppan D, et al. Hepatic fibrosis: concept to treatment. J Hepatol. 2015;62:S15–S24.

    PubMed  CAS  Google Scholar 

  9. Apte M, Pirola RC, Wilson JS. Pancreatic stellate cell: physiologic role, role in fibrosis and cancer. Curr Opin Gastroenterol. 2015;31:416–423.

    PubMed  CAS  Google Scholar 

  10. Conwell DL, Lee LS, Yadav D, et al. American Pancreatic Association Practice Guidelines in Chronic Pancreatitis: evidence-based report on diagnostic guidelines. Pancreas. 2014;43:1143–1162.

    PubMed  PubMed Central  Google Scholar 

  11. Lieb JG, Forsmark CE. Review article: pain and chronic pancreatitis. Aliment Pharmacol Ther. 2009;29:706–719.

    PubMed  CAS  Google Scholar 

  12. Arthur MJ. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology. 2002;122:1525–1528.

    PubMed  Google Scholar 

  13. Bedossa P. Reversibility of hepatitis B virus cirrhosis after therapy: who and why? Liver Int. 2015;35:78–81.

    PubMed  Google Scholar 

  14. Talukdar R, Tandon RK. Pancreatic stellate cells: new target in the treatment of chronic pancreatitis. J Gastroenterol Hepatol. 2008;23:34–41.

    PubMed  CAS  Google Scholar 

  15. Sun M, Kisseleva T. Reversibility of liver fibrosis. Clin Res Hepatol Gastroenterol. 2015;39:S60–S63.

    PubMed  PubMed Central  Google Scholar 

  16. Zimmermann A, Gloor B, Kappeler A, et al. Pancreatic stellate cells contribute to regeneration early after acute necrotising pancreatitis in humans. Gut. 2002;51:574–578.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Lerch MM, Gorelick FS. Models of acute and chronic pancreatitis. Gastroenterology. 2013;144:1180–1193.

    PubMed  Google Scholar 

  18. Lampel M, Kern HF. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol. 1977;373:97–117.

    PubMed  CAS  Google Scholar 

  19. Yamamoto M, Otani M, Otsuki M. A new model of chronic pancreatitis in rats. Am J Physiol Gastrointest Liver Physiol. 2006;291:G700–G708.

    PubMed  CAS  Google Scholar 

  20. Tanaka T, Miura Y, Matsugu Y, et al. Pancreatic duct obstruction is an aggravating factor in the canine model of chronic alcoholic pancreatitis. Gastroenterology. 1998;115:1248–1253.

    PubMed  CAS  Google Scholar 

  21. Ji B, Tsou L, Wang H, et al. Ras activity levels control the development of pancreatic diseases. Gastroenterology. 2009;137:1072–1082.

    PubMed  CAS  Google Scholar 

  22. Meyerholz DK, Stoltz DA, Pezzulo AA, et al. Pathology of gastrointestinal organs in a porcine model of cystic fibrosis. Am J Pathol. 2010;176:1377–1389.

    PubMed  PubMed Central  Google Scholar 

  23. Lombardi B, Estes LW, Longnecker DS. Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-deficient diet. Am J Pathol. 1975;79:465–480.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Ida S, Ohmuraya M, Hirota M, et al. Chronic pancreatitis in mice by treatment with choline-deficient ethionine-supplemented diet. Exp Anim. 2010;59:421–429.

    PubMed  CAS  Google Scholar 

  25. Chandra R, Liddle RA. Cholecystokinin. Curr Opin Endocrinol Diabetes Obes. 2007;14:63–67.

    PubMed  CAS  Google Scholar 

  26. Dufresne M, Seva C, Fourmy D. Cholecystokinin and gastrin receptors. Physiol Rev. 2006;86:805–847.

    PubMed  CAS  Google Scholar 

  27. Singh P, Owlia A, Espeijo R et al. Novel gastrin receptors mediate mitogenic effects of gastrin and processing intermediates of gastrin on Swiss 3T3 fibroblasts. Absence of detectable cholecystokinin (CCK)-A and CCK-B receptors. J Biol Chem. 1995;270:8429–8438.

  28. Berna MJ, Seiz O, Nast JF, et al. CCK1 and CCK2 receptors are expressed on pancreatic stellate cells and induce collagen production. J Biol Chem. 2010;285:38905–38914.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Apte MV, Park S, Phillips PA, et al. Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas. 2004;29:179–187.

    PubMed  CAS  Google Scholar 

  30. Apte MV, Wilson JS, Lugea A, et al. A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 2013;144:1210–1219.

    PubMed  Google Scholar 

  31. Smith JP, Cooper TK, McGovern CO, et al. Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in mice. Pancreas. 2014;43:1050–1059.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Nadella S, Burks J, Al-Sabban A, et al. Dietary fat stimulates pancreatic cancer growth and promotes fibrosis of the tumor microenvironment through the cholecystokinin receptor. Am J Physiol Gastrointest Liver Physiol. 2018;315:G699–G712.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Passman AM, Strauss RP, McSpadden SB, et al. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice. Dis Model Mech. 2015;8:1635–1641.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408.

    PubMed  CAS  Google Scholar 

  35. Adler G, Gerhards G, Schick J, et al. Effects of in vivo cholinergic stimulation of rat exocrine pancreas. Am J Physiol. 1983;244:G623–G629.

    PubMed  CAS  Google Scholar 

  36. Niederau C, Ferrell LD, Grendell JH. Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology. 1985;88:1192–1204.

    PubMed  CAS  Google Scholar 

  37. Saluja A, Saito I, Saluja M, et al. In vivo rat pancreatic acinar cell function during supramaximal stimulation with caerulein. Am J Physiol. 1985;249:G702–G710.

    PubMed  CAS  Google Scholar 

  38. Whitcomb DC. Pancreatitis: TIGAR-O version 2 risk/etiology checklist with topic reviews, updates, and use primers. Clin Transl Gastroenterol. 2019;10:e00027.

    PubMed  PubMed Central  Google Scholar 

  39. Ji B, Bi Y, Simeone D, et al. Human pancreatic acinar cells do not respond to cholecystokinin. Pharmacol Toxicol. 2002;91:327–332.

    PubMed  CAS  Google Scholar 

  40. Berna MJ, Jensen RT. Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases. Curr Top Med Chem. 2007;7:1211–1231.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Chang RS, Lotti VJ, Chen TB, et al. Characterization of the binding of [3H]-(±)-L-364,718: a new potent, nonpeptide cholecystokinin antagonist radioligand selective for peripheral receptors. Mol Pharmacol. 1986;30:212–217.

    PubMed  CAS  Google Scholar 

  42. Boyce M, Warrington S, Black J. Netazepide, a gastrin/CCK2 receptor antagonist, causes dose-dependent, persistent inhibition of the responses to pentagastrin in healthy subjects. Br J Clin Pharmacol. 2013;76:689–698.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Chang KJ. Endoscopic ultrasound-guided fine needle aspiration in the diagnosis and staging of pancreatic tumors. Gastrointest Endosc Clin N Am. 1995;5:723–734.

    PubMed  CAS  Google Scholar 

  44. Pauletzki JG, Xu QW, Shaffer EA. Inhibition of gallbladder emptying decreases cholesterol saturation in bile in the Richardson ground squirrel. Hepatology. 1995;22:325–331.

    PubMed  CAS  Google Scholar 

  45. Miederer SE, Lindstaedt H, Kutz K, et al. Efficient treatment of gastric ulcer with proglumide (Milid) in outpatients (double blind trial). Acta Hepatogastroenterol (Stuttg). 1979;26:314–318.

    CAS  Google Scholar 

  46. Brzozowski T, Konturek PC, Konturek SJ, et al. Acceleration of ulcer healing by cholecystokinin (CCK): role of CCK-A receptors, somatostatin, nitric oxide and sensory nerves. Regul Pept. 1999;82:19–33.

    PubMed  CAS  Google Scholar 

  47. Shiratori K, Takeuchi T, Satake K, et al. Clinical evaluation of oral administration of a cholecystokinin-A receptor antagonist (loxiglumide) to patients with acute, painful attacks of chronic pancreatitis: a multicenter dose-response study in Japan. Pancreas. 2002;25:e1–e5.

    PubMed  Google Scholar 

  48. Smith JP, Liu G, Soundararajan V, et al. Identification and characterization of CCK-B/gastrin receptors in human pancreatic cancer cell lines. Am J Physiol. 1994;266:R277–R283.

    PubMed  CAS  Google Scholar 

  49. Smith JP, Solomon TE. Cholecystokinin and pancreatic cancer: the chicken or the egg? Am J Physiol Gastrointest Liver Physiol. 2014;306:G91–G101.

    PubMed  Google Scholar 

  50. Garces MC, Gomez-Cerezo J, Alba D, et al. Relationship of basal and postprandial intraduodenal bile acid concentrations and plasma cholecystokinin levels with abdominal pain in patients with chronic pancreatitis. Pancreas. 1998;17:397–401.

    PubMed  CAS  Google Scholar 

  51. Haber PS, Keogh GW, Apte MV, et al. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol. 1999;155:1087–1095.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Das SK, Varadhan S, Dhanya L, et al. Diagnostic efficiency of amylase and type IV collagen in predicting chronic pancreatitis. Indian J Clin Biochem. 2009;24:60–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Gress TM, Menke A, Bachem M, et al. Role of extracellular matrix in pancreatic diseases. Digestion. 1998;59:625–637.

    PubMed  CAS  Google Scholar 

  54. Nagashio Y, Ueno H, Imamura M, et al. Inhibition of transforming growth factor beta decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice. Lab Invest. 2004;84:1610–1618.

    PubMed  CAS  Google Scholar 

  55. Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer. 2017;17:594–604.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Storz P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat Rev Gastroenterol Hepatol. 2017;14:296–304.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the technical support from the staff in the Lombardi Core Histology laboratory. We also appreciate the staff in the animal care facility.

Funding

This work was funded by a grant from the National Pancreas Foundation to SN and VC. Part of the work was also funded by an American Gastroenterology Association Elsevier Pilot Research Award to JPS. Postdoctoral support was provided by a NIH training grant to Sandeep Nadella TL1TR001431. These studies were conducted in part at the Lombardi Comprehensive Cancer Center Histopathology and Tissue Shared resource and in the Preclinical Imaging Research Laboratory which is supported in part by NIH/NCI grant P30-CA051008.

Author information

Authors and Affiliations

Authors

Contributions

SN, VC, and JPS contributed to conception and design; SN, VC, HC, BK, RDT, and JPS contributed to acquisition of data; analysis and interpretation of data (e.g., statistical analysis, biostatistics, and computational analysis) were performed by SN, VC, HC, and JPS; all authors contributed equally to writing, review, and/or revision of the manuscript.

Corresponding author

Correspondence to Jill P. Smith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadella, S., Ciofoaia, V., Cao, H. et al. Cholecystokinin Receptor Antagonist Therapy Decreases Inflammation and Fibrosis in Chronic Pancreatitis. Dig Dis Sci 65, 1376–1384 (2020). https://doi.org/10.1007/s10620-019-05863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05863-5

Keywords

Navigation