Skip to main content

Advertisement

Log in

Research Progress on the Relationship Between Acute Pancreatitis and Calcium Overload in Acinar Cells

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Acute pancreatitis is a human disease with multiple causes that leads to autodigestion of the pancreas. There is sufficient evidence to support the key role of sustained increase in cytosolic calcium concentrations in the early pathogenesis of the disease. To clarify the mechanism of maintaining calcium homeostasis in the cell and pathological processes caused by calcium overload would help to research directly targeted therapeutic agents. We will specifically review the following: intracellular calcium homeostasis and regulation, the occurrence of calcium overload in acinar cells, the role of calcium overload in the pathogenesis of AP, the treatment strategy proposed for calcium overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AP:

Acute pancreatitis

Ca2+ :

Calcium

PACs:

Pancreatic acinar cells

[Ca2+]e :

Extracellular Ca2+ concentration

[Ca2+]c :

The cytosolic Ca2+ concentration

PM:

Plasma membrane

ER:

Endoplasmic reticulum

SR:

Sarcoplasmic reticulum

InsP3 :

Inositol 1,4,5-trisphosphate

InsP3Rs:

InsP3 receptors

RyRs:

Ryanodine receptors

FAEEs:

Fatty acid ethyl esters

PIP2:

Phosphatidylinositol(4,5)bisphosphate

DG:

Diacylglycerol

IICR:

InsP3-induced Ca2+ release

InsP3R1:

The type 1 InsP3R

InsP3R2:

The type 2 InsP3R

InsP3R3:

The type 3 InsP3R

ATP:

Adenosine triphosphate

WT:

Wild-type

ZGs:

Zymogen granules

cADPR:

Cyclic ADP ribose

CICR:

Calcium-induced calcium release

SCaMPER:

Sphingolipid Ca2+ release-mediating protein of the endoplasmic reticulum

VOCCs:

Voltage-operated Ca2+ channels

SOCCs:

Store-operated Ca2+ channels

TRPC:

Transient receptor potential channel

STIM1:

Stromal interaction molecule 1

Ach:

Acetylcholine

ROCCs:

Receptor-operated Ca2+ channels

PKC:

Protein kinase C

MPO:

Myeloperoxidase

PMCA:

Ca2+-ATPase on the plasma membrane

[Ca2+]i :

Intracellular calcium concentration

NCX:

Na+/Ca2+ exchange

SERCA:

SR/ER Ca2+-ATPase

TAP:

Trypsinogen-activating peptide

MPTP:

Mitochondrial permeability transition pore

PLA2:

Phospholipase A2

TXA2:

Thromboxane A2

PGI2:

Prostacyclin

PAF:

Platelet-activating factor

xDH:

Xanthine dehydrogenase

XOD:

Xanthine oxidase

OFRs:

Oxygen free radicals

ROS:

Reactive oxygen species

CRAC:

Calcium release activation of calcium

NAC:

N-acetylcysteine

sAC:

Soluble adenylyl cyclase

cAMP:

Cyclic adenosine monophosphate

LDH:

Lactate dehydrogenase

Cyp D:

Cyclophilin D

PACs:

Pancreatic acinar cells

Ψm :

Mitochondrial membrane potential

References

  1. Li Z, Wang G, Zhen G, Zhang Y, Liu J, Liu S. Effects of hemodialysis combined with hemoperfusion on severe acute pancreatitis. Turk J Gastroenterol Off J Turk Soc Gastroenterol. 2018;29:198.

    Google Scholar 

  2. Parys JB, Bultynck G. Ca2+ signaling and cell death: focus on the role of Ca2+ signals in the regulation of cell death & survival processes in health, disease and therapy. Cell Calcium. 2018;70:1–2.

    CAS  PubMed  Google Scholar 

  3. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.

    CAS  PubMed  Google Scholar 

  4. 朱大年, 王庭槐. 生理学.第8版. 人民卫生出版社. 2013.

  5. 张肇达. 急性胰腺炎. 人民卫生出版社. 2004.

  6. Criddle DN, Murphy J, Fistetto G, et al. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastroenterology. 2006;130:781.

    CAS  PubMed  Google Scholar 

  7. Gerasimenko JV, Lur G, Sherwood MW, et al. Pancreatic protease activation by alcohol metabolite depends on Ca2+ release via acid store IP3 receptors. Proc Natl Acad Sci USA. 2009;106:10758.

    CAS  PubMed  Google Scholar 

  8. Petersen OH, Tepikin AV, Gerasimenko JV, Gerasimenko OV, Sutton R, Criddle DN. Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca signal generation and pancreatitis. Cell Calcium. 2009;45:634–642.

    CAS  PubMed  Google Scholar 

  9. Petersen OH, Gerasimenko OV, Tepikin AV, Gerasimenko JV. Aberrant Ca(2+) signalling through acidic calcium stores in pancreatic acinar cells. Cell Calcium. 2011;50:193–199.

    CAS  PubMed  Google Scholar 

  10. Carreras-Sureda A, Pihán P, Hetz C. Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses. Cell Calcium. 2018;70:24–31.

    CAS  PubMed  Google Scholar 

  11. Muallem S, Chung WY, Jha A, Ahuja M. Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep. 2017;18:e201744331.

    Google Scholar 

  12. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361:315–325.

    CAS  PubMed  Google Scholar 

  13. Weng N, Baumler MD, Thomas DD, et al. Functional role of J domain of cysteine string protein in Ca2+-dependent secretion from acinar cells. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1030–G1039.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lur G, Sherwood MW, Ebisui E, et al. InsP(3) receptors and orai channels in pancreatic acinar cells: co-localization and its consequences. Biochem J. 2011;436:231–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Nd WL, Alzayady KJ, Yule DI. Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity. J Biol Chem. 2017;292:11714.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Park HS, Betzenhauser MJ, Won JH, Chen J, Yule DI. The type 2 inositol (1,4,5)-trisphosphate (InsP3) receptor determines the sensitivity of InsP3-induced Ca2+ release to ATP in pancreatic acinar cells. J Biol Chem. 2008;283:26081–26088.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tu H, Wang Z, Bezprozvanny I. Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J. 2005;88:1056–1069.

    CAS  PubMed  Google Scholar 

  18. Orabi AI, Luo YH, Ahmad MU, et al. IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. Plos One. 2012;7:e48465.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gerasimenko JV, Gerasimenko OV, Petersen OH. The role of Ca2+ in the pathophysiology of pancreatitis. J Physiol. 2014;592:269–280.

    CAS  PubMed  Google Scholar 

  20. Bootman MD, Collins TJ, Peppiatt CM, et al. Calcium signalling–an overview. Semin Cell Dev Biol. 2001;12:3–10.

    CAS  PubMed  Google Scholar 

  21. Choi KJ, Cho DS, Kim JY, et al. Ca-induced Ca release from internal stores in INS-1 rat insulinoma cells. Korean J Physiol Pharmacol. 2011;15:53–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerasimenko JV, Flowerdew SE, Voronina SG, et al. Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. J Biol Chem. 2006;281:40154.

    CAS  PubMed  Google Scholar 

  23. Husain SZ, Prasad P, Grant WM, Kolodecik TR, Nathanson MH, Gorelick FS. The ryanodine receptor mediates early zymogen activation in pancreatitis. Proc Natl Acad Sci USA. 2005;102:14386–14391.

    CAS  PubMed  Google Scholar 

  24. Geyer N, Diszhazi G, Csernoch L, Jona I, Almassy J. Bile acids activate ryanodine receptors in pancreatic acinar cells via a direct allosteric mechanism. Cell Calcium. 2015;58:160–170.

    CAS  PubMed  Google Scholar 

  25. Won JH, Cottrell WJ, Foster TH, Yule DI. Ca2+ release dynamics in parotid and pancreatic exocrine acinar cells evoked by spatially limited flash photolysis. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1166–G1177.

    CAS  PubMed  Google Scholar 

  26. Young KW, Challiss RA, Nahorski SR, Mackrill JJ. Lysophosphatidic acid-mediated Ca2+ mobilization in human SH-SY5Y neuroblastoma cells is independent of phosphoinositide signalling, but dependent on sphingosine kinase activation. Biochem J. 1999;343:45.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schnurbus R, De PTD, Grohovaz F, Zacchetti D. Re-evaluation of primary structure, topology, and localization of Scamper, a putative intracellular Ca2+ channel activated by sphingosylphosphocholine. Biochem J. 2002;362:183–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cullen PJ. Bridging the GAP in inositol 1,3,4,5-tetrakisphosphate signalling. Biochim Biophys Acta. 1998;1436:35–47.

    CAS  PubMed  Google Scholar 

  29. Clapham DE. Calcium signaling. Cell. 2007;131:1047–1058.

    CAS  PubMed  Google Scholar 

  30. Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev. 2015;67:821–870.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Petersen O. Can specific calcium channel blockade be the basis for a drug-based treatment of acute pancreatitis? Exp Rev Gastroenterol Hepatol. 2014;8:339–341.

    CAS  Google Scholar 

  32. Putney JW Jr. A model for receptor-regulated calcium entry. Cell Calcium. 1986;7:1–12.

    CAS  PubMed  Google Scholar 

  33. Balla T. Ca2+ and lipid signals hold hands at ER-plasma membrane contact sites. J Physiol. 2018;596:2709–2716.

    CAS  PubMed  Google Scholar 

  34. Kim JY, Zeng W, Kiselyov K, et al. Homer 1 mediates store- and inositol 1,4,5-trisphosphate receptor-dependent translocation and retrieval of TRPC3 to the plasma membrane. J Biol Chem. 2006;281:32540–32549.

    CAS  PubMed  Google Scholar 

  35. Cahalan MD, Zhang SL, Yeromin AV, Ohlsen K, Roos J, Stauderman KA. Molecular basis of the CRAC channel. Cell Calcium. 2007;42:133–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liou J, Man LK, Heo WD, et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol. 2005;15:1235–1241.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabourin J, Le Gal L, Saurwein L, Haefliger JA, Raddatz E, Allagnat F. Store-operated Ca2+ entry mediated by orai1 and TRPC1 participates to insulin secretion in rat beta-cells. J Biol Chem. 2015;290:30530–30539.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sabourin J, Allagnat F. Store-operated Ca2+ entry: a key component of the insulin secretion machinery. J Mol Endocrinol. 2016;57:F35–F39.

    CAS  PubMed  Google Scholar 

  39. Kim MS, Hong JH, Li Q, et al. Deletion of TRPC3 in mice reduces store-operated Ca2+ influx and the severity of acute pancreatitis. Gastroenterology. 2009;137:1509–1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang G, Zhang J, Xu C, Han X, Gao Y, Chen H. Inhibition of SOCs attenuates acute lung injury induced by severe acute pancreatitis in rats and PMVECs injury induced by lipopolysaccharide. Inflammation. 2016;39:1049–1058.

    CAS  PubMed  Google Scholar 

  41. Song AM, Bhagat L, Singh VP, Van Acker GG, Steer ML, Saluja AK. Inhibition of cyclooxygenase-2 ameliorates the severity of pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1166–G1174.

    CAS  PubMed  Google Scholar 

  42. Wagner J, Keizer J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J. 1994;67:447–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 章毅. 大鼠胰岛β 细胞钙离子缓冲力及其对分泌的影响, 山西医科大学. 2004.

  44. Mogami H, Gardner J, Gerasimenko OV, Camello P, Petersen OH, Tepikin AV. Calcium binding capacity of the cytosol and endoplasmic reticulum of mouse pancreatic acinar cells. J Physiol. 2010;518:463–467.

    Google Scholar 

  45. Ferdek PE, Gerasimenko JV, Peng S, Tepikin AV, Petersen OH, Gerasimenko OV. A novel role for Bcl-2 in regulation of cellular calcium extrusion. Curr Biol. 2012;22:1241–1246.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bruce JIE. Metabolic regulation of the PMCA: role in cell death and survival☆. Cell Calcium. 2017;69:28–36.

    PubMed  Google Scholar 

  47. Bayerdorffer E, Haase W, Schulz I. Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells. J Membr Biol. 1985;87:107–119.

    CAS  PubMed  Google Scholar 

  48. Muallem S, Beeker T, Pandol SJ. Role of Na+/Ca2+ exchange and the plasma membrane Ca2+ pump in hormone-mediated Ca2+ efflux from pancreatic acini. J Membr Biol. 1988;102:153–162.

    CAS  PubMed  Google Scholar 

  49. Matthews EK, Petersen OH. Pancreatic acinar cells: ionic dependence of the membrane potential and acetylcholine-induced depolarization. J Physiol. 1973;231:283–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Douglas WW. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol. 1968;34:451–474.

    CAS  PubMed  Google Scholar 

  51. Qiu Y, Li YY, Li SG, Song BG, Zhao GF. Effect of qingyitang on activity of intracellular Ca2+-Mg2+-ATPase in rats with acute pancreatitis. World J Gastroenterol. 2004;10:100–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim JY, Kim KH, Lee JA, et al. Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells. Gastroenterology. 2002;122:1941–1953.

    CAS  PubMed  Google Scholar 

  53. Fischer L, Gukovskaya AS, Young SH, et al. Phosphatidylinositol 3-kinase regulates Ca2+ signaling in pancreatic acinar cells through inhibition of sarco(endo) plasmic reticulum Ca2+-ATPase. Am J Physiol Gastroint Liver Physiol. 2004;287:G1200.

    CAS  Google Scholar 

  54. Rossi CS, Lehninger AL. Stoichiometric relationships between accumulation of ions by mitochondria and the energy-coupling sites in the respiratory chain. Biochem Z. 1963;338:698.

    CAS  PubMed  Google Scholar 

  55. Scarpa A, Graziotti P. Mechanisms for intracellular calcium regulation in heart : I. Stopped-flow measurements of Ca++ uptake by cardiac mitochondria. J Gen Phys. 1973;62:756.

    CAS  Google Scholar 

  56. Bragadin M, Pozzan T, Azzone GF. Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry. 1979;18:5972–5978.

    CAS  PubMed  Google Scholar 

  57. Bruce JI, Elliott AC. Oxidant-impaired intracellular Ca2+ signaling in pancreatic acinar cells: role of the plasma membrane Ca2+-ATPase. Am J Physiol Cell Physiol. 2007;293:C938–C950.

    CAS  PubMed  Google Scholar 

  58. Fonteriz R, Matesanz-Isabel J, Arias-Del-Val J, Alvarez-Illera P, Montero M, Alvarez J. Modulation of calcium entry by mitochondria. Adv Exp Med Biol. 2016;898:405–421.

    CAS  PubMed  Google Scholar 

  59. Palty R, Reuter H. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA. 2010;107:436.

    CAS  PubMed  Google Scholar 

  60. Shearer MG, Imrie CW. Parathyroid hormone levels, hyperparathyroidism and acute pancreatitis. Br J Surg. 1986;73:282–284.

    CAS  PubMed  Google Scholar 

  61. Cope O, Culver PJ, Mixter CG Jr, Nardi GL. Pancreatitis, a diagnostic clue to hyperparathyroidism. Ann Surg. 1957;145:857–863.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mixter CG, Keynes WM, Cope O. Further experience with pancreatitis as a diagnostic clue to hyperparathyroidism. Calif Med. 1962;96:55.

    Google Scholar 

  63. Clark OH. Hyperparathyroidism and pancreatitis. Jama J Am Med Assoc. 1980;243:246–247.

    Google Scholar 

  64. Khoo TK, Vege SS, Abulebdeh HS, Ryu E, Nadeem S, Wermers RA. Acute pancreatitis in primary hyperparathyroidism: a population-based study. J Clin Endocrinol Metab. 2009;94:2115–2118.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sitges-Serra A, Alonso M, Lecea CD, Gores PF, Sutherland DER. Pancreat hyperparathyroidism. 1988;75:158–160.

    CAS  Google Scholar 

  66. Frick TW, Spycher MA, Heitz PU, Largiader F, Goodale RL. Hypercalcaemia and pancreatic ultrastructure in cats. Eur J Surg. 1992;158:289–294.

    CAS  PubMed  Google Scholar 

  67. Mithöfer K, Fernándezdel CC, Frick TW, Lewandrowski KB, Rattner DW, Warshaw AL. Acute hypercalcemia causes acute pancreatitis and ectopic trypsinogen activation in the rat. Gastroenterology. 1995;109:239–246.

    PubMed  Google Scholar 

  68. Ward JB, Petersen OH, Jenkins SA, Sutton R. Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? Lancet. 1995;346:1016–1019.

    CAS  PubMed  Google Scholar 

  69. Mukherjee R, Mareninova OA, Odinokova IV, et al. Original article: mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 2016;65:1333–1346.

    CAS  PubMed  Google Scholar 

  70. Petersen OH, Courjaret R, Machaca K. Ca2+ tunnelling through the ER lumen as a mechanism for delivering Ca2+ entering via store-operated Ca2+ channels to specific target sites. J Phys. 2017;595:2999.

    CAS  Google Scholar 

  71. Gorelick FS, Thrower E. The acinar cell and early pancreatitis responses. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2009;7:S10.

    CAS  Google Scholar 

  72. Petersen OH, Tepikin AV, Gerasimenko JV, Gerasimenko OV, Sutton R, Criddle DN. Fatty acids, alcohol and fatty acid ethyl esters: toxic Ca2+ signal generation and pancreatitis. Cell Calcium. 2009;45:634–642.

    CAS  PubMed  Google Scholar 

  73. Yu HG, Klonowski-Stumpe H. Ethacrynic acid inhibits pancreatic exocrine secretion. Acta Pharmacol Sin. 2001;22:961–965.

    CAS  PubMed  Google Scholar 

  74. Liang HY, Song ZM, Cui ZJ. Lasting inhibition of receptor-mediated calcium oscillations in pancreatic acini by neutrophil respiratory burst–a novel mechanism for secretory blockade in acute pancreatitis? Biochem Biophys Res Commun. 2013;437:361–367.

    CAS  PubMed  Google Scholar 

  75. Petersen OH, Gerasimenko OV, Gerasimenko JV. Pathobiology of acute pancreatitis: focus on intracellular calcium and calmodulin. F1000 Med Rep. 2011;3:15.

    PubMed  PubMed Central  Google Scholar 

  76. Petersen OH. Ca2+-induced pancreatic cell death: roles of the endoplasmic reticulum, zymogen granules, lysosomes and endosomes. J Gastroenterol Hepatol.. 2008;23:S31–S36.

    CAS  PubMed  Google Scholar 

  77. Waterford SD, Kolodecik TR, Thrower EC, Gorelick FS. Vacuolar ATPase regulates zymogen activation in pancreatic acini. J Biol Chem. 2005;280:5430.

    CAS  PubMed  Google Scholar 

  78. Kukor Z, Mayerle J, Kruger B, et al. Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem. 2002;277:21389–21396.

    CAS  PubMed  Google Scholar 

  79. Saluja AK, Donovan EA, Yamanaka K, Yamaguchi Y, Hofbauer B, Steer ML. Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology. 1997;113:304.

    CAS  PubMed  Google Scholar 

  80. Foitzik T, Fernándezdel CC, Ferraro MJ, Mithöfer K, Rattner DW, Warshaw AL. Pathogenesis and prevention of early pancreatic infection in experimental acute necrotizing pancreatitis. Ann Surg. 1995;222:179.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Burke JE, Dennis EA. Phospholipase A2 biochemistry. Cardiovasc Drugs Therapy. 2009;23:49–59.

    CAS  Google Scholar 

  82. Liu LR, Xia SH. Role of platelet-activating factor in the pathogenesis of acute pancreatitis. World J Gastroenterol. 2006;12:539–545.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dabrowski A, Osada J, Dabrowska MI, Wereszczynska-Siemiatkowska U, Siemiatkowski A. Increased expression of the intercellular adhesion molecule-1 (ICAM-1) on peripheral blood neutrophils in acute pancreatitis. Adv Med Sci. 2014;59:102–107.

    PubMed  Google Scholar 

  84. Roudebush WE, Wild MD, Maguire EH. Expression of the platelet-activating factor receptor in human spermatozoa: differences in messenger ribonucleic acid content and protein distribution between normal and abnormal spermatozoa. Fertil Steril. 2000;73:967.

    CAS  PubMed  Google Scholar 

  85. Muili KA, Wang D, Orabi AI, et al. Bile acids induce pancreatic acinar cell injury and pancreatitis by activating calcineurin. J Biol Chem. 2013;288:570.

    CAS  PubMed  Google Scholar 

  86. Chen ZH, Liu ZH, Yu C, Ji DX, Li LS. Endothelial dysfunction in patients with severe acute pancreatitis: improved by continuous blood purification therapy. Int J Artif Organs. 2007;30:393.

    PubMed  Google Scholar 

  87. Fujimura K, Kubota Y, Ogura M, et al. Role of endogenous platelet-activating factor in caerulein-induced acute pancreatitis in rats: protective effects of a PAF-antagonist. J Gastroenterol Hepatol. 1992;7:199.

    CAS  PubMed  Google Scholar 

  88. Ji RL, Xia SH, Di Y, Xu W. Mechanism and dose-effect of Ginkgolide B on severe acute pancreatitis of rats. World J Gastroenterol. 2011;17:2241.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 孙红, 刘戟. 腺泡细胞钙超载与急性胰腺炎关系研究进展. 重庆医学. 2013;42:3826–3829.

  90. Hackert T, Werner J. Antioxidant therapy in acute pancreatitis: experimental and clinical evidence. Antioxid Redox Signal. 2011;15:2767.

    CAS  PubMed  Google Scholar 

  91. Grupe M, Myers G, Penner R, Fleig A. Activation of store-operated ICRAC by hydrogen peroxide. Cell Calcium. 2010;48:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ramudo L, Manso MA. N-acetylcysteine in acute pancreatitis. World J Gastrointest Pharmacol Therap. 2010;1:21.

    Google Scholar 

  93. Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol and obesity induced fatty liver diseases. Free Radic Biol Med. 2008;44:1259.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Frick TW. The role of calcium in acute pancreatitis. Surgery. 2012;152:S157.

    PubMed  Google Scholar 

  95. Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology. 2018;154:689–703.

    CAS  PubMed  Google Scholar 

  96. Huai J, Shao Y, Sun X, Jin Y, Wu J, Huang Z. Melatonin ameliorates acute necrotizing pancreatitis by the regulation of cytosolic Ca2+ homeostasis. Pancreatol Off J Int Assoc Pancreatol (IAP).. 2012;12:257.

    CAS  Google Scholar 

  97. Choi KJ, Kim KS, Kim SH, Kim DK, Park HS. Caffeine and 2-aminoethoxydiphenyl borate (2-APB) have different ability to inhibit intracellular calcium mobilization in pancreatic acinar cell. Korean J Physiol Pharmacol Off J Korean Physiol Soc Korean Soc Pharmacol. 2010;14:105–111.

    CAS  Google Scholar 

  98. Huang W, Cane MC, Mukherjee R, et al. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release. Gut. 2017;66:301–313.

    CAS  PubMed  Google Scholar 

  99. Wen L, Voronina S, Javed MA, et al. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 Mouse models. Gastroenterology. 2015;149:481.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Vervliet T, Gerasimenko JV, Ferdek PE, et al. BH4 domain peptides derived from Bcl-2/Bcl-XL as novel tools against acute pancreatitis. Cell Death Discov. 2018;4:58.

    PubMed  PubMed Central  Google Scholar 

  101. Qiu Y, Li Y-Y, Li S-G, Song B-G, Zhao G-F. Effect of Qingyitang on activity of intracellular Ca^2+-Mg^2+-ATPase in rats with acute pancreatitis. World J Gastroenterol. 2004;10:100–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Xue P, Deng LH, Zhang ZD, et al. Effect of Chaiqinchengqi decoction on sarco/endoplasmic reticulum Ca2+-ATPase mRNA expression of pancreatic tissues in acute pancreatitis rats. 世界胃肠病学杂志 (英文版). 2008;14:2343–2348.

    Google Scholar 

  103. Wang L, Ma Q, Chen X, Sha H, Ma Z. Effects of resveratrol on calcium regulation in rats with severe acute pancreatitis. Eur J Pharmacol. 2008;580:271.

    CAS  PubMed  Google Scholar 

  104. Jha RK, Ma Q, Lei Z, Sha H. Resveratrol ameliorates the deleterious effect of severe acute pancreatitis. Cell Biochem Biophys. 2012;62:397–402.

    CAS  PubMed  Google Scholar 

  105. Ma Q, Zhang M, Wang Z, Ma Z, Sha H. The beneficial effect of resveratrol on severe acute pancreatitis. Ann N Y Acad Sci. 2011;1215:96.

    CAS  PubMed  Google Scholar 

  106. Zhu ZD, Yu T, Liu HJ, Jin J, He J. SOCE induced calcium overload regulates autophagy in acute pancreatitis via calcineurin activation. Cell Death Dis. 2018;9:50.

    PubMed  PubMed Central  Google Scholar 

  107. Shah AU, Sarwar A, Orabi AI, et al. Protease activation during in vivo pancreatitis is dependent on calcineurin activation. Am J Physiol Gastrointest Liver Physiol. 2009;136:G967.

    Google Scholar 

  108. Muili KA, Ahmad M, Orabi AI, et al. Pharmacological and genetic inhibition of calcineurin protects against carbachol-induced pathological zymogen activation and acinar cell injury. Am J Physiol Gastrointest Liver Physiol. 2012;302:G898.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wen L, Javed TA, Yimlamai D, Mukherjee A, Xiao X, Husain SZ. Transient high pressure in pancreatic ducts promotes inflammation and alters tight junctions via calcineurin signaling in mice. Gastroenterology. 2018. https://doi.org/10.1053/j.gastro.2018.06.036.

    Article  PubMed  Google Scholar 

  110. Orabi AI, Wen L, Javed TA, et al. Targeted inhibition of pancreatic acinar cell calcineurin is a novel strategy to prevent post-ERCP pancreatitis. Cell Mol Gastroenterol Hepatol. 2017;3:119.

    PubMed  Google Scholar 

  111. Kolodecik TR, Shugrue CA, Thrower EC, Levin LR, Buck J, Gorelick FS. Activation of soluble adenylyl cyclase protects against secretagogue stimulated zymogen activation in rat pancreatic acinar cells. Plos One. 2012;7:e41320.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Onur E, Paksoy M, Baca B, Akoglu H. Hyperbaric oxygen and N-acetylcysteine treatment in l-arginine-induced acute pancreatitis in rats. J Investig Surg Off J Acad Surg Res. 2012;25:20.

    Google Scholar 

  113. Sateesh J, Bhardwaj P, Singh N, Saraya A. Effect of antioxidant therapy on hospital stay and complications in patients with early acute pancreatitis: a randomised controlled trial. Trop Gastroenterol Off J Dig Dis Found. 2010;30:201.

    Google Scholar 

  114. Shore ER, Awais M, Kershaw NM, et al. Small molecule inhibitors of cyclophilin D to protect mitochondrial function as a potential treatment for acute pancreatitis. J Med Chem. 2016;59:2596.

    CAS  PubMed  Google Scholar 

  115. Mukherjee R, Mareninova OA, Odinokova IV, et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 2016;65:1333.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Affiliated Hospital of Southwest Medical University.

Funding

This article was funded by the following fund project: “The role and mechanism of calcium channels in hyperlipidemia acute pancreatitis,” project number: 2015LZCYD-S04 (6/15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingming Deng or Muhan Lü.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, S., Wei, Q., Hu, Q. et al. Research Progress on the Relationship Between Acute Pancreatitis and Calcium Overload in Acinar Cells. Dig Dis Sci 64, 25–38 (2019). https://doi.org/10.1007/s10620-018-5297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5297-8

Keywords

Navigation