Skip to main content

Advertisement

Log in

Proteomic Analysis of Serum Amyloid A as a Potential Marker in Intestinal Behçet’s Disease

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Aims

Data regarding biomarkers to understand disease pathogenesis and to assess disease activity of intestinal Behçet’s disease (BD) are limited. Therefore, we aimed to investigate the differentially expressed proteins in sera from patients with intestinal BD and to search for biomarkers using mass spectrometry-based proteomic analysis.

Methods

Serum samples were pooled for the screening study, and two-dimensional electrophoresis (2-DE) was performed to characterize the proteins present in intestinal BD patients. Candidate protein spots were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatic analysis. To validate the proteomic results, serum samples from an independent cohort were assessed by enzyme-linked immunosorbent assay.

Results

Pooled serum samples were used for 2-DE, and approximately 400 protein spots were detected in the sera of intestinal BD patients. Of the 22 differentially expressed proteins, 3 were successfully identified using MALDI-TOF/TOF MS. The three up-regulated proteins identified in the intestinal BD group included fibrin, apolipoprotein A-IV, and serum amyloid A (SAA). Serum SAA in intestinal BD patients (2.76 ± 2.50 ng/ml) was significantly higher than that in controls (1.68 ± 0.90 ng/ml, p = 0.007), which is consistent with the proteomic results. In addition, the level of IL-1β in patients with intestinal BD (8.96 ± 1.23 pg/ml) was higher than that in controls (5.40 ± 0.15 pg/ml, p = 0.009). SAA released by HT-29 cells was markedly increased by tumor necrosis factor-α (TNF-α) and lipopolysaccharides stimulation.

Conclusions

Our proteomic analysis revealed that SAA was up-regulated in intestinal BD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kobayashi K, Ueno F, Bito S, et al. Development of consensus statements for the diagnosis and management of intestinal Behcet’s disease using a modified Delphi approach. J Gastroenterol. 2007;42:737–745.

    Article  PubMed  Google Scholar 

  2. Sakane T, Takeno M, Suzuki N, Inaba G. Behcet’s disease. The New England Journal of Medicine. 1999;341:1284–1291.

    Article  CAS  PubMed  Google Scholar 

  3. Xavier R, Podolsky DK. Commensal flora: wolf in sheep’s clothing. Gastroenterology. 2005;128:1122–1126.

    Article  CAS  PubMed  Google Scholar 

  4. Bayraktar Y, Ozaslan E, Van Thiel DH. Gastrointestinal manifestations of Behcet’s disease. J Clin Gastroenterol. 2000;30:144–154.

    Article  CAS  PubMed  Google Scholar 

  5. Ebert EC. Gastrointestinal manifestations of Behcet’s disease. Dig Dis Sci. 2009;54:201–207.

    Article  PubMed  Google Scholar 

  6. Lee HW, Kim WH, Cheon JH. The medical treatments of intestinal Behçet’s disease: an update. Intestinal Research. 2013;11:155–160.

    Article  Google Scholar 

  7. Jung YS, Hong SP, Kim TI, Kim WH, Cheon JH. Long-term clinical outcomes and factors predictive of relapse after 5-aminosalicylate or sulfasalazine therapy in patients with intestinal Behcet disease. J Clin Gastroenterol. 2012;46:e38–e45.

    Article  CAS  PubMed  Google Scholar 

  8. Jung YS, Kim SW, Yoon JY, et al. Expression of a soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) correlates with clinical disease activity in intestinal Behcet’s disease. Inflamm Bowel Dis. 2011;17:2130–2137.

    Article  PubMed  Google Scholar 

  9. Roda G, Caponi A, Benevento M, et al. New proteomic approaches for biomarker discovery in inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:1239–1246.

    Article  PubMed  Google Scholar 

  10. Vaiopoulou A, Gazouli M, Theodoropoulos G, Zografos G. Current advantages in the application of proteomics in inflammatory bowel disease. Dig Dis Sci. 2012;57:2755–2764.

    Article  CAS  PubMed  Google Scholar 

  11. Chan PP, Wasinger VC, Leong RW. Current application of proteomics in biomarker discovery for inflammatory bowel disease. World Journal of Gastrointestinal Pathophysiology. 2016;7:27–37.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cheon JH, Kim ES, Shin SJ, et al. Development and validation of novel diagnostic criteria for intestinal Behcet’s disease in Korean patients with ileocolonic ulcers. Am J Gastroenterol. 2009;104:2492–2499.

    Article  PubMed  Google Scholar 

  13. Cheon JH, Han DS, Park JY, et al. Development, validation, and responsiveness of a novel disease activity index for intestinal Behcet’s disease. Inflamm Bowel Dis. 2011;17:605–613.

    Article  PubMed  Google Scholar 

  14. Park KS, Kim H, Kim NG, et al. Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma. Hepatology. 2002;35:1459–1466.

    Article  CAS  PubMed  Google Scholar 

  15. Choi BK, Cho YM, Bae SH, Zoubaulis CC, Paik YK. Single-step perfusion chromatography with a throughput potential for enhanced peptide detection by matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics. 2003;3:1955–1961.

    Article  CAS  PubMed  Google Scholar 

  16. Kim SW, Kim ES, Moon CM, et al. Genetic polymorphisms of IL-23R and IL-17A and novel insights into their associations with inflammatory bowel disease. Gut. 2011;60:1527–1536.

    Article  CAS  PubMed  Google Scholar 

  17. Noble CL, Abbas AR, Lees CW, et al. Characterization of intestinal gene expression profiles in Crohn’s disease by genome-wide microarray analysis. Inflamm Bowel Dis. 2010;16:1717–1728.

    Article  PubMed  Google Scholar 

  18. Noble CL, Abbas AR, Cornelius J, et al. Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis. Gut. 2008;57:1398–1405.

    Article  CAS  PubMed  Google Scholar 

  19. Sodin-Semrl S, Zigon P, Cucnik S, et al. Serum amyloid A in autoimmune thrombosis. Autoimmun Rev. 2006;6:21–27.

    Article  CAS  PubMed  Google Scholar 

  20. Chambers RE, Stross P, Barry RE, Whicher JT. Serum amyloid A protein compared with C-reactive protein, alpha 1-antichymotrypsin and alpha 1-acid glycoprotein as a monitor of inflammatory bowel disease. Eur J Clin Invest. 1987;17:460–467.

    Article  CAS  PubMed  Google Scholar 

  21. Sands BE. Biomarkers of inflammation in inflammatory bowel disease. Gastroenterology. 2015;149:1275-e1272–1285.e1272.

    Article  Google Scholar 

  22. Vermeire S, Van Assche G, Rutgeerts P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut. 2006;55:426–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pandey A, Mann M. Proteomics to study genes and genomes. Nature. 2000;405:837–846.

    Article  CAS  PubMed  Google Scholar 

  24. Choi CH, Kim TI, Kim BC, et al. Anti-Saccharomyces cerevisiae antibody in intestinal Behcet’s disease patients: relation to clinical course. Dis Colon Rectum. 2006;49:1849–1859.

    Article  PubMed  Google Scholar 

  25. Kim DH, Cheon JH. Intestinal Behcet’s disease: a true inflammatory bowel disease or merely an intestinal complication of systemic vasculitis? Yonsei Med J. 2016;57:22–32.

    Article  CAS  PubMed  Google Scholar 

  26. Timms JF, Hale OJ, Cramer R. Advances in mass spectrometry-based cancer research and analysis: from cancer proteomics to clinical diagnostics. Expert Review of Proteomics. 2016;13:593–607.

    Article  CAS  PubMed  Google Scholar 

  27. Goldknopf IL. Blood-based proteomics for personalized medicine: examples from neurodegenerative disease. Expert Review of Proteomics. 2008;5:1–8.

    Article  CAS  PubMed  Google Scholar 

  28. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Molecular & Cellular Proteomics: MCP. 2002;1:845–867.

    Article  CAS  Google Scholar 

  29. Jacobs JM, Adkins JN, Qian WJ, et al. Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res. 2005;4:1073–1085.

    Article  CAS  PubMed  Google Scholar 

  30. Shen J, Ran ZH, Zhang Y, et al. Biomarkers of altered coagulation and fibrinolysis as measures of disease activity in active inflammatory bowel disease: a gender-stratified, cohort analysis. Thromb Res. 2009;123:604–611.

    Article  CAS  PubMed  Google Scholar 

  31. Nanni P, Levander F, Roda G, Caponi A, James P, Roda A. A label-free nano-liquid chromatography-mass spectrometry approach for quantitative serum peptidomics in Crohn’s disease patients. J Chromatogr, B: Anal Technol Biomed Life Sci. 2009;877:3127–3136.

    Article  CAS  Google Scholar 

  32. Knutson CG, Mangerich A, Zeng Y, et al. Chemical and cytokine features of innate immunity characterize serum and tissue profiles in inflammatory bowel disease. Proc Natl Acad Sci USA. 2013;110:E2332–E2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kjeldsen J, Lassen JF, Brandslund I, Schaffalitzky de Muckadell OB. Markers of coagulation and fibrinolysis as measures of disease activity in inflammatory bowel disease. Scand J Gastroenterol. 1998;33:637–643.

    Article  CAS  PubMed  Google Scholar 

  34. Broedl UC, Schachinger V, Lingenhel A, et al. Apolipoprotein A-IV is an independent predictor of disease activity in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13:391–397.

    Article  PubMed  Google Scholar 

  35. Vowinkel T, Mori M, Krieglstein CF, et al. Apolipoprotein A-IV inhibits experimental colitis. J Clin Investig. 2004;114:260–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu F, Dassopoulos T, Cope L, et al. Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflamm Bowel Dis. 2007;13:807–821.

    Article  PubMed  Google Scholar 

  37. Mao L, Dong H, Yang P, et al. MALDI-TOF/TOF-MS reveals elevated serum haptoglobin and amyloid A in Behcet’s disease. J Proteome Res. 2008;7:4500–4507.

    Article  CAS  PubMed  Google Scholar 

  38. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1–38.

    CAS  PubMed  Google Scholar 

  39. Garbers C, Hermanns HM, Schaper F, et al. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev. 2012;23:85–97.

    Article  CAS  PubMed  Google Scholar 

  40. Uhlar CM, Whitehead AS. Serum amyloid A, the major vertebrate acute-phase reactant. European Journal of Biochemistry/FEBS. 1999;265:501–523.

    Article  CAS  Google Scholar 

  41. Upragarin N, Landman WJ, Gaastra W, Gruys E. Extrahepatic production of acute phase serum amyloid A. Histol Histopathol. 2005;20:1295–1307.

    CAS  PubMed  Google Scholar 

  42. Connolly M, Veale DJ, Fearon U. Acute serum amyloid A regulates cytoskeletal rearrangement, cell matrix interactions and promotes cell migration in rheumatoid arthritis. Ann Rheum Dis. 2011;70:1296–1303.

    Article  CAS  PubMed  Google Scholar 

  43. Johnson BD, Kip KE, Marroquin OC, et al. Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation. 2004;109:726–732.

    Article  CAS  PubMed  Google Scholar 

  44. Jijon HB, Madsen KL, Walker JW, Allard B, Jobin C. Serum amyloid A activates NF-kappaB and proinflammatory gene expression in human and murine intestinal epithelial cells. Eur J Immunol. 2005;35:718–726.

    Article  CAS  PubMed  Google Scholar 

  45. Cheng N, He R, Tian J, Ye PP, Ye RD. Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J Immunol. 2008;181:22–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sandri S, Rodriguez D, Gomes E, Monteiro HP, Russo M, Campa A. Is serum amyloid A an endogenous TLR4 agonist? J Leukoc Biol. 2008;83:1174–1180.

    Article  CAS  PubMed  Google Scholar 

  47. Niemi K, Teirila L, Lappalainen J, et al. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol. 2011;186:6119–6128.

    Article  CAS  PubMed  Google Scholar 

  48. Ather JL, Ckless K, Martin R, et al. Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. J Immunol. 2011;187:64–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hwang YG, Balasubramani GK, Metes ID, Levesque MC, Bridges SL Jr, Moreland LW. Differential response of serum amyloid A to different therapies in early rheumatoid arthritis and its potential value as a disease activity biomarker. Arthritis Research & Therapy. 2016;18:108.

    Article  Google Scholar 

  50. Visvanathan S, Wagner C, Rojas J, et al. E-selectin, interleukin 18, serum amyloid a, and matrix metalloproteinase 9 are associated with clinical response to golimumab plus methotrexate in patients with active rheumatoid arthritis despite methotrexate therapy. J Rheumatol. 2009;36:1371–1379.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by two Grants (A120176, HI13C1345) from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), which is funded by the Ministry of Health and Welfare, Republic of Korea; two Grants (NRF-2013R1A2A2A01067123, NRF-2014R1A1A1008096) from the Basic Science Research Program through the National Research Foundation of Korea, which is funded by the Ministry of Science, ICT and Future Planning; and a faculty research Grant (2012-31-0477) from the Department of Internal Medicine, Yonsei University, College of Medicine. And we wish to acknowledge technical support from Yonsei Proteome Research Center (www.proteomix.org).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Ho Kim or Jae Hee Cheon.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J., Kim, J.H., Kim, S.W. et al. Proteomic Analysis of Serum Amyloid A as a Potential Marker in Intestinal Behçet’s Disease. Dig Dis Sci 62, 1953–1962 (2017). https://doi.org/10.1007/s10620-017-4606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4606-y

Keywords

Navigation