Skip to main content
Log in

Current Advantages in the Application of Proteomics in Inflammatory Bowel Disease

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Since the formulation of the concept of proteomics, a plethora of proteomic technologies have been developed in order to study proteomes. In inflammatory bowel disease (IBD), several studies use proteomics to try to better understand the disease and discover molecules which can be used as biomarkers. Biomarkers should be able to be used for diagnosis, therapy and prognosis. Although several biomarkers have been discovered, few biomarkers have clinical value. In this review, we analyze and report the current use of proteomic techniques to highlight biomarkers characterizing IBD, and different stages of disease activity. We also report the biomarkers and their potential clinical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429.

    Article  CAS  PubMed  Google Scholar 

  2. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wirtz S, Neurath MF. Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev. 2007;59:1073–1083.

    Article  CAS  PubMed  Google Scholar 

  4. Xavier R, Podolsky DK. Commensal flora: wolf in sheep’s clothing. Gastroenterology. 2005;128:1122–1126.

    Article  CAS  PubMed  Google Scholar 

  5. Kugathasan S, Fiocchi C. Progress in basic inflammatory bowel disease research. Semin Pediatr Surg. 2007;16:146–153.

    Article  PubMed  Google Scholar 

  6. Meuwis MA, Fillet M, Geurts P, et al. Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling. Biochem Pharmacol. 2007;73:1422–1433.

    Article  CAS  PubMed  Google Scholar 

  7. Mendoza JL, Abreu MT. Biological markers in inflammatory bowel disease: practical consideration for clinicians. Gastroenterol Clin Biol. 2009;33:S158–S173.

    Article  CAS  PubMed  Google Scholar 

  8. Iskandar HN, Ciorba MA. Biomarkers in inflammatory bowel disease: current practices and recent advances. Trans Res. 2012;159:313–325.

    Article  CAS  Google Scholar 

  9. Li X, Conklin L, Alex P. New serological biomarkers of inflammatory bowel disease. World J Gastroenterol. 2008;14:5115–5124.

    Article  CAS  PubMed  Google Scholar 

  10. Alex P, Gucek M, Li X. Applications of proteomics in the study of inflammatory bowel diseases: current status and future directions with available technologies. Inflamm Bowel Dis. 2009;15:616–629.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Roy P, Shukla Y. Applications of proteomic techniques in cancer research. Cancer Therapy. 2008;6:841–856.

    CAS  Google Scholar 

  12. Goldknopf IL. Blood-based proteomics for personalized medicine: examples from neurodegenerative disease. Expert Rev Proteomics. 2008;5:1–8.

    Article  CAS  PubMed  Google Scholar 

  13. Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS. Biomarkers: mining the biofluid proteome. Mol Cell Proteomics. 2005;4:409–418.

    Article  CAS  PubMed  Google Scholar 

  14. VanMeter A, Signore M, Pierobon M, Espina V, Liotta LA, Petricoin EF 3rd. Reverse-phase protein microarrays: application to biomarker discovery and translational medicine. Expert Rev Mol Diagn. 2007;7:625–633.

    Article  CAS  PubMed  Google Scholar 

  15. Cekaite L, Hovig E, Sioud M. Protein arrays: a versatile toolbox for target identification and monitoring of patient immune responses. Methods Mol Biol. 2007;360:335–348.

    CAS  PubMed  Google Scholar 

  16. Hamelinck D, Zhou H, Li L, et al. Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol Cell Proteomics. 2005;4:773–784.

    Article  CAS  PubMed  Google Scholar 

  17. Chaerkady R, Pandey A. Applications of proteomics to lab diagnosis. Annu Rev Pathol. 2008;3:485–498.

    Article  CAS  PubMed  Google Scholar 

  18. Cravatt BF, Simon GM, Yates JR 3rd. The biological impact of mass-spectrometry- based proteomics. Nature. 2007;450:991–1000.

    Article  CAS  PubMed  Google Scholar 

  19. Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008;452:571–579.

    Article  CAS  PubMed  Google Scholar 

  20. Gulcicek EE, Colangelo CM, McMurray W, et al. Proteomics and the analysis of proteomic data: an overview of current protein-profiling technologies. Curr Protoc Bioinformatics. 2005;13:1.

    PubMed  Google Scholar 

  21. Reinders J, Sickmann A. Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol Eng. 2007;24:169–177.

    Article  CAS  PubMed  Google Scholar 

  22. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl. 2005;44:7342–7372.

    Article  CAS  PubMed  Google Scholar 

  23. Felley-Bosco E, André M. Proteomics and chronic inflammatory bowel diseases. Pathol Res Pract. 2004;200:129–133.

    Article  CAS  PubMed  Google Scholar 

  24. Feng JT, Shang S, Beretta L. Proteomics for the early detection and treatment of hepatocellular carcinoma. Oncogene. 2006;25:3810–3817.

    Article  CAS  PubMed  Google Scholar 

  25. Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem. 2001;70:437–473.

    Article  CAS  PubMed  Google Scholar 

  26. Hatsugai M, Kurokawa MS, Kouro T, et al. Protein profiles of peripheral blood mononuclear cells are useful for differential diagnosis of ulcerative colitis and Crohn’s disease. J Gastroenterol. 2010;45:488–500.

    Article  CAS  PubMed  Google Scholar 

  27. Markó L, Szigeti N, Szabó Z, et al. Potential urinary biomarkers of disease activity in Crohn’s disease. Scand J Gastroenterol. 2010;45:1440–1448.

    Article  PubMed  Google Scholar 

  28. Meuwis MA, Fillet M, Lutteri L, et al. Proteomics for prediction and characterization of response to infliximab in Crohn’s disease: a pilot study. Clin Biochem. 2008;41:960–967.

    Article  CAS  PubMed  Google Scholar 

  29. Nanni P, Parisi D, Roda G, et al. Serum protein profiling in patients with inflammatory bowel diseases using selective solid-phase bulk extraction, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and chemometric data analysis. Rapid Commun Mass Spectrom. 2007;21:4142–4148.

    Article  CAS  PubMed  Google Scholar 

  30. Subramanian V, Subramanian D, Pollok RC. Serum protein signatures determined by mass Spectrometry (SELDI-ToF) accurately distinguishes Crohn’s disease (CD) from ulcerative colitis (UC). Gastroenterology. 2008;134:196.

    Google Scholar 

  31. Bertone P, Snyder M. Advances in functional protein microarray technology. FEBS J. 2005;272:5400–5411.

    Article  CAS  PubMed  Google Scholar 

  32. Hall David A, Ptacek Jason, Snyder Michael. Protein microarray technology. Mech Ageing Dev. 2007;128:161–167.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chen CS, Sullivan S, Anderson T, et al. Identification of novel serological biomarkers for inflammatory bowel disease using Escherichia coli proteome chip. Mol Cell Proteomics. 2009;8:1765–1776.

    Article  CAS  PubMed  Google Scholar 

  34. Vermeulen N, Vermeire S, Michiels G, Joossens M, Rutgeerts PJ, Bosuyt X. Protein microarray experiments for profiling of the autoimmune response in inflammatory bowel disease; identification of PHLA1. Gastroenterology. 2008;134:197.

    Article  Google Scholar 

  35. Sullivan S, Zhu H, Cuffari C, et al. Identification and validation of serological IBD biomarkers by a novel high throughput proteomic approach using high density protein chip technology. Gastroenterology. 2006;130:A24.

    Google Scholar 

  36. Kader HA, Tchernev VT, Satyaraj E, et al. Patel. Protein microarray analysis of disease activity in pediatric inflammatory bowel disease demonstrates elevated serum PLGF, IL-7, TGF-β1, and IL-12p40 levels in Crohn’s disease and ulcerative colitis patients in remission versus active disease. Am J Gastroenterol. 2005;100:414–423.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Schrader M, Schulz-Knappe P. Peptidomics technologies for human body fluids. Trends Biotechnol. 2001;19:S55–S60.

    Article  CAS  PubMed  Google Scholar 

  38. Govorun VM, Ivanov VT. Proteomics and peptidomics in fundamental and applied medical studies. Bioorg Khim. 2011;37:199–215.

    CAS  PubMed  Google Scholar 

  39. Nanni P, Levander F, Roda G, Caponi A, James P, Roda A. A label-free nano-liquid chromatography-mass spectrometry approach for quantitative serum peptidomics in Crohn’s disease patients. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:3127–3136.

    Article  CAS  PubMed  Google Scholar 

  40. Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics. 2011;11:2139–2161.

    Article  CAS  PubMed  Google Scholar 

  41. Dotan I. New serologic markers for inflammatory bowel disease diagnosis. Dig Dis. 2010;28:418–423.

    Article  PubMed  Google Scholar 

  42. Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics. 2006;6:6326–6353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Liotta LA, Ferrari M, Petricoin E. Clinical proteomics: written in blood. Nature. 2003;425:905.

    Article  CAS  PubMed  Google Scholar 

  44. Haleem JI, Zhen X, Timothy DV. Serum and plasma proteomics. Chem Rev. 2007;107:3601–3620.

    Article  Google Scholar 

  45. Ebert MP, Korc M, Malfertheiner P, Rocken C. Advances, challenges, and limitations in serum-proteomebased cancer diagnosis. J Proteome Res. 2006;5:19–25.

    Article  CAS  PubMed  Google Scholar 

  46. Bossuyt X. Serologic markers in inflammatory bowel disease. Clin Chem. 2006;52:171–181.

    Article  CAS  PubMed  Google Scholar 

  47. Peeters M, Joossens S, Vermeire S, Vlietinck R, Bossuyt X, Rutgeerts P. Diagnostic value of anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am J Gastroenterol. 2001;96:730–734.

    Article  CAS  PubMed  Google Scholar 

  48. Dubinsky MC, Lin YC, Dutridge D, et al. Western Regional Pediatric IBD Research Alliance. Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006;101:360–367.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Dotan I, Fishman S, Dgani Y, et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn’s disease. Gastroenterology. 2006;131:366–378.

    Article  CAS  PubMed  Google Scholar 

  50. Ferrante M, Henckaerts L, Joossens M, et al. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut. 2007;56:1394–1403.

    Article  PubMed  Google Scholar 

  51. Vandewalle-El Khoury P, Colombel JF, Joossens S, et al. Detection of antisynthetic mannoside antibodies (ASigmaMA) reveals heterogeneity in the ASCA response of Crohn’s disease patients and contributes to differential diagnosis, stratification, and prediction. Am J Gastroenterol. 2008;103:949–957.

    Article  PubMed  Google Scholar 

  52. Sakiyama T, Fujita H, Tsubouchi H. Autoantibodies against ubiquitination factor E4A (UBE4A) are associated with severity of Crohn’s disease. Inflamm Bowel Dis. 2008;14:310–317.

    Article  PubMed  Google Scholar 

  53. Vermeire S, Van Assche G, Rutgeerts P. C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis. 2004;10:661–665.

    Article  PubMed  Google Scholar 

  54. Solem CA, Loftus EV Jr, Tremaine WJ, Harmsen WS, Zinsmeister AR, Sandborn WJ. Correlation of C-reactive protein with clinical, endoscopic, histologic, and radiographic activity in inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:707–712.

    Article  PubMed  Google Scholar 

  55. Boirivant M, Leoni M, Tariciotti D, Fais S, Squarcia O, Pallone F. The clinical significance of serum C reactive protein levels in Crohn’s disease. Results of a prospective longitudinal study. J Clin Gastroenterol. 1988;10:401–405.

    Article  CAS  PubMed  Google Scholar 

  56. Wright JP, Young GO, Tigler-Wybrandi N. Predictors of acute relapse of Crohn’s disease. A laboratory and clinical study. Dig Dis Sci. 1987;32:164–170.

    Article  CAS  PubMed  Google Scholar 

  57. Sachar DB, Smith H, Chan S, Cohen LB, Lichtiger S, Messer J. Erythrocytic sedimentation rate as a measure of clinical activity in inflammatory bowel disease. J Clin Gastroenterol. 1986;8:647–650.

    Article  CAS  PubMed  Google Scholar 

  58. Sachar DB, Luppescu NE, Bodian C, Shlien RD, Fabry TL, Gumaste VV. Erythrocyte sedimentation as a measure of Crohn’s disease activity: opposite trends in ileitis versus colitis. J Clin Gastroenterol. 1990;12:643–646.

    Article  CAS  PubMed  Google Scholar 

  59. Jensen KB, Jarnum S, Koudahl G, Kristensen M. Serum orosomucoid in ulcerative colitis: its relation to clinical activity, protein loss, and turnover of albumin and IgG. Scand J Gastroenterol. 1976;11:177–183.

    CAS  PubMed  Google Scholar 

  60. Andre C, Descos L, Landais P, Fermanian J. Assessment of appropriate laboratory measurements to supplement the Crohn’s disease activity index. Gut. 1981;22:571–574.

    Article  CAS  PubMed  Google Scholar 

  61. Lehrke M, Konrad A, Schachinger V, et al. CXCL16 is a surrogate marker of inflammatory bowel disease. Scand J Gastroenterol. 2008;43:283–288.

    Article  CAS  PubMed  Google Scholar 

  62. Broedl UC, Schachinger V, Lingenhel A, et al. Apolipoprotein A-IV is an independent predictor of disease activity in patients with inflammatory bowel disease. Inflamm Bowel Di. 2007;13:391–397.

    Article  Google Scholar 

  63. Konrad A, Lehrke M, Schachinger V, et al. Resistin is an inflammatory marker of inflammatory bowel disease in humans. Eur J Gastroenterol Hepatol. 2007;19:1070–1074.

    Article  CAS  PubMed  Google Scholar 

  64. Van Assche G, Rutgeerts P. Physiological basis for novel drug therapies used to treat the inflammatory bowel diseases. I. Immunology and therapeutic potential of antiadhesion molecule therapy in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol. 2005;288:G169–G174.

    Article  PubMed  Google Scholar 

  65. Magro F, Araujo F, Pereira P, Meireles E, Diniz-Ribeiro M, Velosom FT. Soluble selectins, sICAM, sVCAM, and angiogenic proteins in different activity groups of patients with inflammatory bowel disease. Dig Dis Sci. 2004;49:1265–1274.

    Article  CAS  PubMed  Google Scholar 

  66. van Dullemen HM, van Deventer SJ, Hommes DW, et al. Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology. 1995;109:129–135.

    Article  PubMed  Google Scholar 

  67. Stronkhorst A, Jansen J, Tytgat G, van Deventer SJH. Soluble IL-2 and TNF receptors p55 and p75 in Crohn’s disease. Gastroenterology. 1994;106:A779.

    Google Scholar 

  68. Propst A, Propst T, Herold M, Vogel W, Judmaier G. Interleukin-1 receptor antagonist in differential diagnosis of inflammatory bowel diseases. Eur J Gastroenterol Hepatol. 1995;7:1031–1036.

    Article  CAS  PubMed  Google Scholar 

  69. Casini-Raggi V, Kam L, Chong YJ, Fiocchi C, Pizarro TT, Cominelli F. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J Immunol. 1995;154:2434–2440.

    CAS  PubMed  Google Scholar 

  70. Crabtree JE, Juby LD, Heatley RV, Lobo AJ, Bullimore DW, Axon AT. Soluble interleukin-2 receptor in Crohn’s disease: relation of serum concentrations to disease activity. Gut. 1990;31:1033–1036.

    Article  CAS  PubMed  Google Scholar 

  71. Nielsen OH, Brynskov J. Soluble interleukin-2 receptors in ulcerative colitis. Mediators Inflamm. 1993;2:115–118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Gustot T, Lemmers A, Louis E, et al. Profile of soluble cytokine receptors in Crohn’s disease. Gut. 2005;54:488–495.

    Article  CAS  PubMed  Google Scholar 

  73. Jones SC, Evans SW, Lobo AJ, Ceska M, Axon AT, Whicher JT. Serum interleukin-8 in inflammatory bowel disease. J Gastroenterol Hepatol. 1993;8:508–512.

    Article  CAS  PubMed  Google Scholar 

  74. Kucharzik T, Stoll R, Lügering N, Domschke W. Circulating antiinflammatory cytokine IL-10 in patients with inflammatory bowel disease (IBD). Clin Exp Immunol. 1995;100:452–456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Tibble JA, Bjarnason I. Non-invasive investigation of inflammatory bowel disease. World J Gastroenterol. 2001;7:460–465.

    CAS  PubMed  Google Scholar 

  76. Angriman I, Scarpa M, D’Incà R, et al. Enzymes in feces: useful markers of chronic inflammatory bowel disease. Clin Chim Acta. 2007;381:63–68.

    Article  CAS  PubMed  Google Scholar 

  77. Poullis A, Foster R, Northfield TC, Mendal MA. Review article: faecal markers in the assessment of activity in inflammatory bowel disease. Aliment Pharmacol Ther. 2002;16:675–681.

    Article  CAS  PubMed  Google Scholar 

  78. Saverymuttu SH, Peters AM, Crofton ME, et al. 111Indium autologous granulocytes in the detection of inflammatory bowel disease. Gut. 1985;26:955–960.

    Article  CAS  PubMed  Google Scholar 

  79. Fagerhol MK, Dale I, Anderson I. Release and quantification of leukocyte derived protein (L1). Scand J Haematol. 1980;24:393–398.

    Article  CAS  Google Scholar 

  80. Taehon K, Roseth AG, Foster R, Bjarnason I. Fecal calprotectin: a simple sensitive quantitative measure of intestinal inflammation in man. Gastroenterology. 1997;112:A1103.

    Article  Google Scholar 

  81. Tibble JA, Sigthorsson G, Bridger S, Fagerhol MK, Bjarnason I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterolgy. 2000;119:15–22.

    Article  CAS  Google Scholar 

  82. Costa F, Mumolo MG, Ceccarelli L, et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut. 2005;54:364–368.

    Article  CAS  PubMed  Google Scholar 

  83. Gisbert JP, Bermejo F, Pérez-Calle JL, et al. Fecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm Bowel Dis. 2009;15:1190–1198.

    Article  PubMed  Google Scholar 

  84. Walker TR, Land ML, Kartashov A, et al. Fecal lactoferrin is a sensitive and specific marker of disease activity in children and young adults with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;44:414–422.

    Article  CAS  PubMed  Google Scholar 

  85. Foell D, Kucharzik T, Kraft M, et al. Neutrophil derived human S100A12 (EN-RAGE) is strongly expressed during chronic active inflammatory bowel disease. Gut. 2003;52:847–853.

    Article  CAS  PubMed  Google Scholar 

  86. Hugot J-P, Chamaiilard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  CAS  PubMed  Google Scholar 

  87. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in Nod2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–606.

    Article  CAS  PubMed  Google Scholar 

  88. Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nature Genet. 2010;42:1118–1125.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nature Genet. 2011;43:246–252.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Mascheretti S, Hampe J, Croucher PJ, et al. Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics. 2002;12:509–515.

    Article  CAS  PubMed  Google Scholar 

  91. Mascheretti S, Schreiber S. Genetic testing in Crohn disease: utility in individualizing patient management. Am J Pharmacogenomics. 2005;5:213–222.

    Article  CAS  PubMed  Google Scholar 

  92. Beaven SW, Abreu MT. Biomarkers in inflammatory bowel disease. Curr Opin Gastroenterol. 2004;20:318–327.

    Article  PubMed  Google Scholar 

  93. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet. 2002;359:1541–1549.

    Article  CAS  PubMed  Google Scholar 

  94. Summerton CB, Longlands MG, Wiener K, Shreeve DR. Faecal calprotectin: a marker of inflammation throughout the intestinal tract. Eur J Gastroenterol Hepatol. 2002;14:841–845.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gazouli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaiopoulou, A., Gazouli, M., Theodoropoulos, G. et al. Current Advantages in the Application of Proteomics in Inflammatory Bowel Disease. Dig Dis Sci 57, 2755–2764 (2012). https://doi.org/10.1007/s10620-012-2291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2291-4

Keywords

Navigation