Skip to main content

Advertisement

Log in

Down-Regulation of PTEN Expression Modulated by Dysregulated miR-21 Contributes to the Progression of Esophageal Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aim

miR-21, a putative tumor oncomiR, is a frequently overexpressed miRNA in a variety of tumors. Because it targets tumor-suppressor genes it has been linked to tumor progression. In this study we investigated the role of miR-21 in esophageal squamous cell carcinoma (ESCC), and its possible mechanism.

Methods

Expression of miR-21 was detected by stem–loop RT-PCR in tissue from 76 invasive ESCC at stage I–IV and in their corresponding para-cancerous histological normal tissues (PCHNT). Thirty endoscopic esophageal mucosal biopsy specimens from non-tumor patients were used as controls. Expression of PTEN in 76 paired ESCC and PCHNT was investigated by real-time RT-PCR and an immunohistochemical method, respectively. Paired tumor and PCHNT specimens of 20 ESCC cases were randomly selected for western blot analysis. The effect of miR-21 on PTEN expression was assessed in the ESCC cell line with an miR-21 inhibitor to reduce miR-21 expression. Furthermore, the roles of miR-21 in cell biology were analyzed by use of miR-21 inhibitor-transfected cells.

Results

Stem–loop RT-PCR revealed miR-21 was significantly overexpressed in ESCC tissues and cell lines. Overexpression of miR-21 correlated with tumor status, lymph node metastasis, and clinical stage. We demonstrated that knockdown of miR-21 significantly increased expression of PTEN protein. Consequent PTEN expression reduced cell proliferation, invasion, and migration.

Conclusions

Our findings suggest that miR-21 could be a potential oncomiR, probably by regulation of PTEN, and a novel prognostic factor for ESCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24:2137–2150.

    Article  PubMed  Google Scholar 

  2. Eslick G. Epidemiology of esophageal cancer. Gastroenterol Clin N Am. 2009;38:17–25.

    Article  Google Scholar 

  3. Bader F, Anwar N, Mahmood S. Geographical variation in the epidemiology of esophageal cancer in Pakistan. Asian Pac J Cancer Prev. 2005;6:139–142.

    Google Scholar 

  4. Wu KS, Huo X, Zhu GH. Relationships between esophageal cancer and spatial environment factors by using geographic information systems. Sci Total Environ. 2008;393:219–225.

    Article  PubMed  CAS  Google Scholar 

  5. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–249.

    Article  PubMed  Google Scholar 

  6. Kuwano H, Kato H, Miyazaki T. Genetic alterations in esophageal cancer. Surg Today. 2005;35:7–18.

    Article  PubMed  Google Scholar 

  7. Sugimoto T, Seki N, Shimizu S, et al. The galanin signaling cascade is a candidate pathway regulating oncogenesis in human squamous cell carcinoma. Genes Chromosomes Cancer. 2009;48:132–142.

    Article  PubMed  CAS  Google Scholar 

  8. Qin YR, Wang LD, Fan ZM, Kwong D, Guan XY. Comparative genomic hybridization analysis of genetic aberrations associated with development of esophageal squamous cell carcinoma in Henan, China. World J Gastroenterol. 2008;14:1828–1835.

    Article  PubMed  Google Scholar 

  9. Davis BN, Hata A. microRNA in cancer—the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer. 2010;1:1100–1104.

    Article  Google Scholar 

  10. Nicolas FE, Lopez-Martinez AF. MicroRNAs in human diseases. Recent Pat DNA Gene Seq. 2010;4:142–154.

    Article  PubMed  CAS  Google Scholar 

  11. Selcuklu SD, Donoghue MT, Spillane C. miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans. 2009;37:918–925.

    Article  PubMed  CAS  Google Scholar 

  12. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor-suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–658.

    Article  PubMed  CAS  Google Scholar 

  13. Ma WJ, Lv GD, Tuersun A, et al. Role of microRNA-21 and effect on PTEN in Kazakh’s esophageal squamous cell carcinoma. Mol Biol Rep. 2011;38:3253–3260.

    Article  PubMed  CAS  Google Scholar 

  14. International Union Against Cancer (UICC). In: Sobin LH, Gospodarowicz MK, Wittekind Ch, eds. TNM Classification of Malignant Tumours, 7th ed. New York: Wiley-Liss; 2010.

  15. Noble JE, Bailey MJ. Quantitation of protein. Methods Enzymol. 2009;463:73–95.

    Article  PubMed  CAS  Google Scholar 

  16. Ge MH, Chen C, Xu JJ, Ling ZQ. Critical regions and spreading of runt-related transcription factor-3 C-phosphate-G (CpG) island methylation in human salivary gland adenoid cystic carcinoma. Hum Pathol. 2011;42:1862–1872.

    Article  PubMed  CAS  Google Scholar 

  17. Mao WM, Zheng WH, Ling ZQ. Epidemiologic risk factors for esophageal cancer development. Asian Pac J Cancer Prev. 2011;12:2461–2466.

    PubMed  Google Scholar 

  18. Lee JA, Lee HY, Lee ES, Kim I, Bae JW. Prognostic Implications of MicroRNA-21 Overexpression in Invasive Ductal Carcinomas of the Breast. J Breast Cancer. 2011;14:269–275.

    Article  PubMed  Google Scholar 

  19. Zhang Z, Li Z, Gao C, et al. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest. 2008;88:1358–1366.

    Article  PubMed  CAS  Google Scholar 

  20. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor-suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–658.

    Article  PubMed  CAS  Google Scholar 

  21. Lou Y, Yang X, Wang F, Cui Z, Huang Y. MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. Int J Mol Med. 2010;26:819–827.

    Article  PubMed  CAS  Google Scholar 

  22. Deftereos G, Corrie SR, Feng Q, et al. Expression of mir-21 and mir-143 in cervical specimens ranging from histologically normal through to invasive cervical cancer. PLoS One. 2011;6:e28423.

    Article  PubMed  CAS  Google Scholar 

  23. Nam EJ, Yoon H, Kim SW, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res. 2008;14:2690–2695.

    Article  PubMed  CAS  Google Scholar 

  24. Huang S, Li XQ, Chen X, Che SM, Chen W, Zhang XZ. Inhibition of microRNA-21 increases radiosensitivity of esophageal cancer cells through phosphatase and tensin homolog deleted on chromosome 10 activation. Dis Esophagus. 2012; doi:10.1111/j.1442-2050.2012.01389.x.

  25. Sheth S, Jajoo S, Kaur T, et al. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One. 2012;7:e51655.

    Article  PubMed  CAS  Google Scholar 

  26. Liu ZL, Wang H, Liu J, Wang ZX. MicroRNA-21 (miR-21) expression promotes growth, metastasis, and chemo- or radioresistance in non-small cell lung cancer cells by targeting PTEN. Mol Cell Biochem. 2013;372:35–45.

    Article  PubMed  CAS  Google Scholar 

  27. Zaravinos A, Radojicic J, Lambrou GI, et al. Expression of miRNAs involved in angiogenesis, tumor cell proliferation, tumor suppressor inhibition, epithelial-mesenchymal transition and activation of metastasis in bladder cancer. J Urol. 2012;188:615–623.

    Article  PubMed  CAS  Google Scholar 

  28. Komatsu S, Ichikawa D, Tsujiura M, et al. Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res. 2013;33:271–276.

    PubMed  Google Scholar 

  29. Hermansen SK, Dahlrot RH, Nielsen BS, Hansen S, Kristensen BW. MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas. J Neurooncol. 2013;111:71–81.

    Article  PubMed  CAS  Google Scholar 

  30. Yang M, Shen H, Qiu C, et al. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer. 2013;49:604–615.

    Article  PubMed  CAS  Google Scholar 

  31. Kjaer-Frifeldt S, Hansen TF, Nielsen BS, et al. The prognostic importance of miR-21 in stage II colon cancer: a population-based study. Br J Cancer. 2012;107:1169–1174.

    Article  PubMed  CAS  Google Scholar 

  32. Zhao Y, Schetter AJ, Yang GB, et al. microRNA and inflammatory gene expression as prognostic marker for overall survival in esophageal squamous cell carcinoma. Int J Cancer. 2013;132:2901–2909.

    Article  PubMed  CAS  Google Scholar 

  33. Gu J, Wang Y, Wu X. MicroRNA in the pathogenesis and prognosis of esophageal cancer. Curr Pharm Des. 2013;19:1292–1300.

    Article  PubMed  CAS  Google Scholar 

  34. Komatsu S, Ichikawa D, Takeshita H, et al. Prognostic impact of circulating miR-21 and miR-375 in plasma of patients with esophageal squamous cell carcinoma. Expert Opin Biol Ther. 2012;12:S53–S59.

    Article  PubMed  CAS  Google Scholar 

  35. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273:13375–13378.

    Article  PubMed  CAS  Google Scholar 

  36. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 2003;22:5501–5510.

    Article  PubMed  CAS  Google Scholar 

  37. Stewart AL, Mhashilkar AM, Yang XH, et al. PI3 K blockade by Ad-PTEN inhibits invasion and induces apoptosis in radial growth phase and metastatic melanoma cells. Mol Med. 2002;8:451–461.

    PubMed  CAS  Google Scholar 

  38. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science. 1998;280:1614–1617.

    Article  PubMed  CAS  Google Scholar 

  39. Castellino RC, Durden DL. Mechanisms of disease: the PI3K-Akt-PTEN signaling node-an intercept point for the control of angiogenesis in brain tumors. Nat Clin Pract Neurol. 2007;3:682–693.

    Article  PubMed  CAS  Google Scholar 

  40. Hu YC, Lam KY, Tang JC, Srivastava G. Mutational analysis of the PTEN/MMAC1 gene in primary oesophageal squamous cell carcinomas. Mol Pathol. 1999;52:353–356.

    Article  PubMed  CAS  Google Scholar 

  41. Blanco-Aparicio C, Renner O, Leal JF, Carnero A. PTEN, more than the AKT pathway. Carcinogenesis. 2007;28:1379–1386.

    Article  PubMed  CAS  Google Scholar 

  42. Reis AH, Vargas FR, Lemos B. More epigenetic hits than meets the eye: microRNAs and genes associated with the tumorigenesis of retinoblastoma. Front Genet. 2012;3:284.

    PubMed  CAS  Google Scholar 

  43. Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol. 2013;774:1–20.

    Article  PubMed  CAS  Google Scholar 

  44. Goeppert B, Schmezer P, Dutruel C, et al. Down-regulation of tumor suppressor A kinase anchor protein 12 in human hepatocarcinogenesis by epigenetic mechanisms. Hepatology. 2010;52:2023–2033.

    Article  PubMed  CAS  Google Scholar 

  45. Fabbri M, Calore F, Paone A, Galli R, Calin GA. Epigenetic regulation of miRNAs in cancer. Adv Exp Med Biol. 2013;754:137–148.

    Article  PubMed  Google Scholar 

  46. Tanaka Y, Kamohara H, Kinoshita K, et al. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer. 2013;119:1159–1167.

    Article  PubMed  CAS  Google Scholar 

  47. Alder H, Taccioli C, Chen H, et al. Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis. 2012;33:1736–1744.

    Article  PubMed  CAS  Google Scholar 

  48. Liu C, Yu J, Yu S, et al. MicroRNA-21 acts as an oncomir through multiple targets in human hepatocellular carcinoma. J Hepatol. 2010;53:98–107.

    Article  PubMed  CAS  Google Scholar 

  49. Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 2013;42:219–228.

    PubMed  CAS  Google Scholar 

  50. Han M, Liu M, Wang Y, et al. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One. 2012;7:e39520.

    Article  PubMed  CAS  Google Scholar 

  51. Yang SM, Huang C, Li XF, Yu MZ, He Y, Li J. miR-21 confers cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology. 2013;306C:162–168.

    Article  Google Scholar 

  52. Vogt PK, Gymnopoulos M, Hart JR. PI 3-kinase and cancer: changing accents. Curr Opin Genet Dev. 2009;19:12–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Program for New Century Excellent Talents in University, Ministry of Education, China (NCET-11-0949), a grant from the Science and Technology General Project of Zhejiang Province (no. 2009C33143), Key Research Projects of Medicine, Ministry of Health, China (no. WKJ2010-2-004), partly by a grant from the Backbone Talent of Zhejiang Provincial Medicine and Hygiene Platform Programs (no. 2011RCA009), a grant from the Scientific and Technological Innovations Fund of Henan Province Higher Education (no. 2009HAST1T001) and a grant from the Science and Technology Key Project of the Ministry of Education, China (no. 210130).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Li or Zhi-Qiang Ling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, P., Mao, WM., Zheng, ZG. et al. Down-Regulation of PTEN Expression Modulated by Dysregulated miR-21 Contributes to the Progression of Esophageal Cancer. Dig Dis Sci 58, 3483–3493 (2013). https://doi.org/10.1007/s10620-013-2854-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2854-z

Keywords

Navigation