Skip to main content

Advertisement

Log in

Activity of Superoxide Dismutase, Catalase, Glutathione Peroxidase, and Glutathione Reductase in Different Stages of Colorectal Carcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Reactive oxygen species are involved in the pathogenesis of colorectal carcinoma. Clarification of oxidative/antioxidant specificities of different stages of colorectal carcinoma is of special importance.

Aim

To determine oxidative/antioxidant status in plasma of patients with different stages of colorectal carcinoma using malondialdehyde concentration, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities and distribution of superoxide dismutase isoforms.

Methods

Lipid peroxidation and antioxidant enzymes activity were estimated using spectrophotometric methods. Reverse zymography was applied for characterization of superoxide dismutase isoforms.

Results

Lipid peroxidation is increased in all groups compared to the control, but without differences between different stages of colorectal carcinoma. Total superoxide dismutase activity is lower in all colorectal carcinoma groups than in control, and there is a significant increase in tumor stage IV when compared with tumor stage II. Manganese superoxide dismutase isoform is dominant in all groups and its relative activities are significantly higher than activities of a copper/zinc isoform. Total peroxidase potential reflected in catalase and glutathione peroxidase activity is increased when compared to the control, but without any significant differences between colorectal carcinoma groups. Glutathione reductase activity is lower in all colorectal carcinoma groups than in control, and a significant decrease in glutathione reductase activity was obtained between patients in tumor stage II and III compared to tumor stage IV.

Conclusions

Colorectal carcinoma is characterized by increased oxidative stress and antioxidant disbalance. Progression of disease is followed by an increase in redox disbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim JC, Kim DD, Lee YM, et al. Evaluation of novel histone deacetylase inhibitors as therapeutic agents for colorectal adenocarcinomas compared to established regimens with the histoculture drug response assay. Int J Colorectal Dis. 2009;24:209–218.

    Article  PubMed  Google Scholar 

  2. Maffei F, Angeloni C, Malaguti M, et al. Plasma antioxidant enzymes and clastogenic factors as possible biomarkers of colorectal cancer risk. Mutat Res. 2011;714:88–92.

    Article  PubMed  CAS  Google Scholar 

  3. Celis JE, Gromov P. Proteomics in translational cancer research: toward an integrated approach. Cancer Cell. 2003;3:9–15.

    Article  PubMed  CAS  Google Scholar 

  4. Bi X, Lin Q, Foo TW, et al. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics. 2006;5:1119–1130.

    Article  PubMed  CAS  Google Scholar 

  5. Kim YJ, Kim EH, Hahm KB. Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities. J Gastroenterol Hepatol. 2012;27:1004–1010.

    Article  PubMed  CAS  Google Scholar 

  6. Kekec Y, Paydas S, Tuli A, Zorludemir S, Sakman G, Seydaoglu G. Antioxidant enzyme levels in cases with gastrointesinal cancer. Eur J Intern Med. 2009;20:403–406.

    Article  PubMed  CAS  Google Scholar 

  7. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70:257–265.

    Article  PubMed  Google Scholar 

  8. Erel OA. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37:112–119.

    Article  PubMed  CAS  Google Scholar 

  9. Ozgonul A, Aksoy N, Dilmec F, Uzunkoy A, Aksoy S. Measurement of total antioxidant response in colorectal cancer using a novel automated method. Turk J Med Sci. 2009;39:503–506.

    CAS  Google Scholar 

  10. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358.

    Article  PubMed  CAS  Google Scholar 

  11. Sun M, Zigman S. Determination of superoxide dismutase in erythrocytes using the method of adrenaline autooxidation. Anal Biochem. 1978;90:81–89.

    Article  PubMed  CAS  Google Scholar 

  12. Flohe L, Otting F. Superoxide dismutase assays. Methods Enzymol. 1984;105:93–104.

    Article  PubMed  CAS  Google Scholar 

  13. Roland FB, Irwin WS. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195:133–140.

    Google Scholar 

  14. Wendel A. Glutathione peroxidase. Methods Enzymol. 1981;77:325–333.

    Article  PubMed  CAS  Google Scholar 

  15. Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol. 1985;113:484–490.

    Article  PubMed  CAS  Google Scholar 

  16. Papailiou J, Bramis KJ, Gazouli M. Theodoropoulos G Stem cells in colon cancer. A new era in cancer theory begins. Int J Colorectal Dis. 2011;26:1–11.

    Article  PubMed  Google Scholar 

  17. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article  PubMed  CAS  Google Scholar 

  18. Skrzydlewska E, Sulkowski S, Koda M, Zalewski B, Kanczuga-Koda I, Sulkowska M. Lipid peroxidation and peroxidant and oxidant status in colorectal cancer. World J Gastroenterol. 2005;11:403–406.

    PubMed  CAS  Google Scholar 

  19. Rainis T, Maor I, Lanir A, Shnizer S, Lavy A. Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Dig Dis Sci. 2007;52:526–530.

    Article  PubMed  Google Scholar 

  20. Biasi F, Tessitore L, Zanetti D, et al. Associated changes of lipid peroxidation and transforming growth factor beta1 levels in human colon cancer during tumor progression. Gut. 2002;50:361–367.

    Article  PubMed  CAS  Google Scholar 

  21. Skrzydlewska E, Stankiewicz A, Sulkowska M, Sulkowski S, Kasacka I. Antioxidant status and lipid peroxidation in colorectal cancer. J Toxicol Environ Health A. 2001;64:213–222.

    Article  PubMed  CAS  Google Scholar 

  22. Skrzydlewska E, Kozuszko B, Sulkowska M, et al. Antioxidant potential in esophageal, stomach and colorectal cancers. Hepatogastroenterology. 2003;50:126–131.

    PubMed  CAS  Google Scholar 

  23. Chang D, Wang F, Zhao YS, Pan HZ. Evaluation of oxidative stress in colorectal cancer patients. Biomed Environ Sci. 2008;21:286–289.

    Article  PubMed  CAS  Google Scholar 

  24. Zhu CH, Huang Y, Oberley LW, Domann FE. A family of AP-2 proteins down-regulate manganese superoxide dismutase expression. J Biol Chem. 2001;276:14407–14413.

    PubMed  CAS  Google Scholar 

  25. Janssen AM, Bosman CB, van Duijn W, et al. Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res. 2000;6:3183–3192.

    PubMed  CAS  Google Scholar 

  26. Satomi A, Murakami S, Hashimoto T, Ishida K, Matsuki M, Sonoda M. Significance of superoxide dismutase (SOD) in human colorectal cancer tissue: correlation with malignant intensity. J Gastroenterol. 1995;30:177–182.

    Article  PubMed  CAS  Google Scholar 

  27. Janssen AM, Bosman CB, van Duijn W, et al. Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res. 2000;6:3183–3192.

    PubMed  CAS  Google Scholar 

  28. Skrzycki M, Majewska M, Podsiad M, Czeczot H. Expression and activity of superoxide dismutase isoenzymes in colorectal cancer. Acta Biochim Pol. 2009;56:663–670.

    PubMed  CAS  Google Scholar 

  29. Ozdemirler Erata G, Kanbağli O, Durlanik O, et al. Induced oxidative stress and decreased expression of inducible heat shock protein 70 (ihsp 70) in patients with colorectal adenocarcinomas. Jpn J Clin Oncol. 2005;35:74–78.

    Google Scholar 

  30. Cvorovic J, Tramer F, Granzotto M, Candussio L, Decorti G, Passamonti S. Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Arch Biochem Biophys. 2010;501:151–157.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants of Ministry of Science and Technologic Development of the Republic of Serbia (Projects III_41033 and 175034).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina R. Gopčević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopčević, K.R., Rovčanin, B.R., Tatić, S.B. et al. Activity of Superoxide Dismutase, Catalase, Glutathione Peroxidase, and Glutathione Reductase in Different Stages of Colorectal Carcinoma. Dig Dis Sci 58, 2646–2652 (2013). https://doi.org/10.1007/s10620-013-2681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2681-2

Keywords

Navigation