Skip to main content

Advertisement

Log in

Evaluation of novel histone deacetylase inhibitors as therapeutic agents for colorectal adenocarcinomas compared to established regimens with the histoculture drug response assay

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background and aims

This study was to evaluate the efficacy of histone deacetylase (HDAC) inhibitors in colorectal cancer together with other established regimens.

Materials and methods

Chemosensitivities of 114 colorectal cancer patients to established regimens (fluorouracil (5-FU with leucovorin (FL), capecitabine, FL with irinotecan (FLIRI), and FL with oxaliplatin (FLOX)) as well as five hydroxamic acid derivatives (suberoylanilide hydroxamic acid, PXD101, and three novel candidates of CG-1, CG-2, and CG-3) were comparatively evaluated using the histoculture drug response assay.

Results

The chemosensitivity with established regimens was between 34.2% and 52.6%, when the cutoff value of the inhibition ratio was set at 30%, and between 54.5% and 84.1% with HDAC inhibitors. All HDAC inhibitors displayed synergistic effects in combination with established regimens of FLOX and FLIRI (P ≤ 0.0001–0.002). Advanced T- and N-category tumors and patients with synchronous adenoma displayed higher chemosensitivity to CG-3, CG-2, and CG-1, respectively, on a multivariate analysis (P = 0.023, 0.044, and 0.045, respectively). Tumors with mismatch repair defects were closely correlated with chemosensitivities to combined regimens of PDX101 with FLOX and FLIRI (P = 0.044 and 0.048, respectively).

Conclusions

Our findings firstly demonstrated the chemo-responsiveness of colorectal cancers to HDAC inhibitors with therapeutic efficacy comparable to the established regimens. Additionally, tumor growth and heredity were significantly associated with specific regimens, supporting their possible role as chemosensitive predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kelly C, Cassidy J (2007) Chemotherapy in metastatic colorectal cancer. Surg Oncol 16:65–70

    Article  PubMed  Google Scholar 

  2. de Gramont A, Buyse M, Abrahantes JC, Burzykowski T, Quinaux E, Cervantes A, Figer A, Lledo G, Flesch M, Mineur L, Carola E, Etienne PL, Rivera F, Chirivella I, Perez-Staub N, Louvet C, André T, Tabah-Fisch I, Tournigand C (2007) Reintroduction of oxaliplatin is associated with improved survival in advanced colorectal cancer. J Clin Oncol 25:3224–3229

    Article  PubMed  Google Scholar 

  3. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, Jandik P, Iveson T, Carmichael J, Alakl M, Gruia G, Awad L, Rougier P (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355:1041–1047

    Article  PubMed  CAS  Google Scholar 

  4. Sabharwal A, Kerr D (2007) Chemotherapy for colorectal cancer in the metastatic and adjuvant setting: past, present and future. Expert Rev Anticancer Ther 7:477–487

    Article  PubMed  CAS  Google Scholar 

  5. Marchion D, Munster P (2007) Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther 7:583–598

    Article  PubMed  CAS  Google Scholar 

  6. Burgess A, Ruefli A, Beamish H, Warrener R, Saunders N, Johnstone R, Gabrielli B (2004) Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 23:6693–6701

    Article  PubMed  CAS  Google Scholar 

  7. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74:659–671

    Article  PubMed  CAS  Google Scholar 

  8. Waldenmaier DS, Babarina A, Kischkel FC (2003) Rapid in vitro chemosensitivity analysis of human colon tumor cell lines. Toxicol Appl Pharmacol 192:237–245

    Article  PubMed  CAS  Google Scholar 

  9. Moon YW, Choi SH, Kim YT, Sohn JH, Chang J, Kim SK, Park MS, Chung KY, Lee HJ, Kim JH (2007) Adenosine triphosphate-based chemotherapy response assay (ATP-CRA)-guided platinum-based 2-drug chemotherapy for unresectable nonsmall-cell lung cancer. Cancer 109:1829–1835

    Article  PubMed  CAS  Google Scholar 

  10. Nakada S, Aoki D, Ohie S, Horiuchi M, Suzuki N, Kanasugi M, Susumu N, Udagawa Y, Nozawa S (2005) Chemosensitivity testing of ovarian cancer using the histoculture drug response assay: sensitivity to cisplatin and clinical response. Int J Gynecol Cancer 15:445–452

    Article  PubMed  CAS  Google Scholar 

  11. Furukawa T, Kubota T, Hoffman RM (1995) Clinical applications of the histoculture drug response assay. Clin Cancer Res 1:305–311

    PubMed  CAS  Google Scholar 

  12. Ohie S, Udagawa Y, Aoki D, Nozawa S (2005) Histoculture drug response assay to monitor chemoresponse. Methods Mol Med 110:79–86

    PubMed  CAS  Google Scholar 

  13. Vescio RA, Redfern CH, Nelson TJ, Ugoretz S, Stern PH, Hoffman RM (1987) In vivo-like drug responses of human tumors growing in three-dimensional gel-supported primary culture. Proc Natl Acad Sci USA 84:5029–5033

    Article  PubMed  CAS  Google Scholar 

  14. Kubota T, Sasano N, Abe O, Nakao I, Kawamura E, Saito T, Endo M, Kimura K, Demura H, Sasano H, Nagura H, Ogawa N, Hoffman RM (1995) Potential of the histoculture drug-response assay to contribute to cancer patient survival. Clin Cancer Res 1:1537–1543

    PubMed  CAS  Google Scholar 

  15. Singh B, Li R, Xu L, Poluri A, Patel S, Shaha AR, Pfister D, Sherman E, Goberdhan A, Hoffman RM, Shah J (2002) Prediction of survival in patients with head and neck cancer using the histoculture drug response assay. Head Neck 24:437–442

    Article  PubMed  Google Scholar 

  16. Andreotti PE, Cree IA, Kurbacher CM, Hartmann DM, Linder D, Harel G, Gleiberman I, Caruso PA, Ricks SH, Untch M, Sartori C, Bruckner HW (1995) Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res 55:5276–5282

    PubMed  CAS  Google Scholar 

  17. Yamashita K, Urakami A, Kubozoe T, Ikeda M, Hirabayashi Y, Yamamura M, Iki K, Akiyama T, Matsumoto H, Hirai T, Sadahira Y, Tsunoda T (2005) In vitro detection of cross-resistant and non-cross-resistant agents with fluorouracil for patients with colorectal cancer. Int J Clin Oncol 10:328–332

    Article  PubMed  CAS  Google Scholar 

  18. Kim JC, Han MS, Lee HK, Kim WS, Park SK, Park KC, Bodmer WF, Rowan AJ, Kim OJ (1999) Distribution of carcinoembryonic antigen and biologic behavior in colorectal carcinoma. Dis Colon Rectum 42:640–648

    Article  PubMed  CAS  Google Scholar 

  19. Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    Article  PubMed  CAS  Google Scholar 

  20. Hayon T, Dvilansky A, Shpilberg O, Nathan I (2003) Appraisal of the MTT-based assay as a useful tool for predicting drug chemosensitivity in leukemia. Leuk Lymphoma 44:1957–1962

    Article  PubMed  CAS  Google Scholar 

  21. Andreotti PE, Linder D, Hartmann DM, Cree IA, Pazzagli M, Bruckner HW (1994) TCA-100 tumour chemosensitivity assay: differences in sensitivity between cultured tumour cell lines and clinical studies. J Biolumin Chemilumin 9:373–378

    Article  PubMed  CAS  Google Scholar 

  22. Fakhrejahani E, Miyamoto A, Tanigawa N (2007) Correlation between thymidylate synthase and dihydropyrimidine dehydrogenase mRNA level and in vitro chemosensitivity to 5-fluorouracil, in relation to differentiation in gastric cancer. Cancer Chemother Pharmacol 60:437–446

    Article  PubMed  CAS  Google Scholar 

  23. Whitehouse PA, Knight LA, Di Nicolantonio F, Mercer SJ, Sharma S, Cree IA (2003) Heterogeneity of chemosensitivity of colorectal adenocarcinoma determined by a modified ex vivo ATP-tumor chemosensitivity assay (ATP-TCA). Anticancer Drugs 14:369–375

    Article  PubMed  CAS  Google Scholar 

  24. Hsi LC, Xi X, Lotan R, Shureiqi I, Lippman SM (2004) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Cancer Res 64:8778–8781

    Article  PubMed  CAS  Google Scholar 

  25. Archer SY, Johnson J, Kim HJ, Ma Q, Mou H, Daesety V, Meng S, Hodin RA (2005) The histone deacetylase inhibitor butyrate downregulates cyclin B1 gene expression via a p21/WAF-1-dependent mechanism in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol 289:G696–G703

    PubMed  CAS  Google Scholar 

  26. Tumber A, Collins LS, Petersen KD, Thougaard A, Christiansen SJ, Dejligbjerg M, Jensen PB, Sehested M, Ritchie JW (2007) The histone deacetylase inhibitor PXD101 synergises with 5-fluorouracil to inhibit colon cancer cell growth in vitro and in vivo. Cancer Chemother Pharmacol 60:275–283

    Article  PubMed  CAS  Google Scholar 

  27. Ocker M, Alajati A, Ganslmayer M, Zopf S, Lüders M, Neureiter D, Hahn EG, Schuppan D, Herold C (2005) The histone-deacetylase inhibitor SAHA potentiates proapoptotic effects of 5-fluorouracil and irinotecan in hepatoma cells. J Cancer Res Clin Oncol 131:385–394

    Article  PubMed  CAS  Google Scholar 

  28. Yonekura K, Basaki Y, Chikahisa L, Okabe S, Hashimoto A, Miyadera K, Wierzba K, Yamada Y (1999) UFT and its metabolites inhibit the angiogenesis induced by murine renal cell carcinoma, as determined by a dorsal air sac assay in mice. Clin Cancer Res 5:2185–2191

    PubMed  CAS  Google Scholar 

  29. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Göttlicher M (2004) Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5:455–463

    Article  PubMed  CAS  Google Scholar 

  30. Bendardaf R, Lamlum H, Ristamäki R, Algars A, Collan Y, Pyrhönen S (2004) Response to chemotherapy (irinotecan plus 5-fluorouracil) in colorectal carcinoma can be predicted by tumour DNA content. Oncology 66:46–52

    Article  PubMed  CAS  Google Scholar 

  31. Hanks S, Rahman N (2005) Aneuploidy-cancer predisposition syndromes: a new link between the mitotic spindle checkpoint and cancer. Cell Cycle 4:225–227

    PubMed  CAS  Google Scholar 

  32. Braun MS, Quirke P, Seymour MT (2007) Molecular markers of chemotherapeutic response and toxicity in colorectal cancer. Expert Rev Anticancer Ther 7:489–501

    Article  PubMed  CAS  Google Scholar 

  33. Plumb J, Steele N, Finn P, Brown R (2004) Epigenetic approaches to cancer therapy. Biochem Soc Trans 32:1095–1097

    Article  PubMed  CAS  Google Scholar 

  34. Williams EA, Coxhead JM, Mathers JC (2003) Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. Proc Nutr Soc 62:107–115

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (A062254). We are grateful to U.S. Shin and S.N. Yoon for the arrangement of tissue samples and the clinical database, and J.K. Park and O.S. Shin for technical advice and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin C. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.C., Kim, D.D., Lee, Y.M. et al. Evaluation of novel histone deacetylase inhibitors as therapeutic agents for colorectal adenocarcinomas compared to established regimens with the histoculture drug response assay. Int J Colorectal Dis 24, 209–218 (2009). https://doi.org/10.1007/s00384-008-0590-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-008-0590-1

Keywords

Navigation