Skip to main content

Advertisement

Log in

The Mechanism of the Down-Regulation of Hepatic Transporters in Rats with Indomethacin-Induced Intestinal Injury

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Previously, we reported that hepatic transporters were down-regulated consistent with intestinal injury in indomethacin (IDM)-treated rats.

Aim

The purpose of this study was to characterize this mechanism of the down-regulation of hepatic transporters in IDM-treated rats.

Methods

Hepatic nuclear receptor expressions, oxidative stress condition and the expression of hepatic transporters were evaluated in rats with IDM-induced intestinal injury with or without the administration of mucosal protectant ornoprostil, a prostaglandin E1 analogue, or aminoguanidine (AG), an iNOS inhibitor.

Results

All the nuclear receptors examined in the present study, which regulates hepatic transporters, were decreased by the administration of IDM. Hepatic glutathione, an indicator of oxidative stress, was significantly reduced compared with control. We then determined the expression of hepatic transporters by semi-quantitative real-time RT-PCR and Western blot analysis in IDM-treated rats with or without the administration of ornoprostil or AG. Ornoprostil recovered the gene expression of Oatp1a1, Oatp1b2 and Mrp2 and protein expression of Mrp2 while it had no effect on Oatp1a1 and Oatp1b2 proteins. These results indicated that the gene expression of hepatic transporters was down-regulated in association with the intestinal injury. On the other hand, there is no effect of AG on the reduced gene expression of hepatic Oatp1a1, Oatp1b2 and Mrp2. In protein expression, AG slightly recovered Mrp2 expression accompanied by a partial decrease in portal NO levels.

Conclusions

We suggest that the transcriptional process influenced by a dysfunction of hepatic nuclear receptors as well as the effect of NO on the post-transcriptional process due to intestinal injury are partially involved in the down-regulation of hepatic transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wallace JL. Nonsteroidal anti-inflammatory drugs and gastroenteropathy: the second hundred years. Gastroenterology. 1997;112:1000–1016.

    Article  PubMed  CAS  Google Scholar 

  2. Davies NM, Wallace JL. Nonsteroidal anti-inflammatory drug-induced gastrointestinal toxicity: new insights into an old problem. J Gastroenterol. 1997;32:127–133.

    Article  PubMed  CAS  Google Scholar 

  3. Reuter BK, Davies NM, Wallace JL. Nonsteroidal anti-inflammatory drug enteropathy in rats: role of permeability, bacteria, and enterohepatic circulation. Gastroenterology. 1997;112:109–117.

    Article  PubMed  CAS  Google Scholar 

  4. Koga H, Aoyagi K, Matsumoto T, Iida M, Fujishima M. Experimental enteropathy in athymic and euthymic rats: synergistic role of lipopolysaccharide and indomethacin. Am J Physiol. 1999;276:G576–G582.

    PubMed  CAS  Google Scholar 

  5. Beck PL, Xavier R, Lu N, et al. Mechanisms of NSAID-induced gastrointestinal injury defined using mutant mice. Gastroenterology. 2000;119:699–705.

    Article  PubMed  CAS  Google Scholar 

  6. Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview. Gastroenterology. 1995;108:1566–1581.

    Article  PubMed  CAS  Google Scholar 

  7. Irvine EJ, Marshall JK. Increased intestinal permeability precedes the onset of Crohn’s disease in a subject with familial risk. Gastroenterology. 2000;119:1740–1744.

    Article  PubMed  CAS  Google Scholar 

  8. Cervinkova Z, Radvakova D, Kohout P. Liver response to indomethacin-induced intestinal injury. Acta Med (Hradec Kralove). 2002;45:13–18.

    CAS  Google Scholar 

  9. Masubuchi Y, Masuda E, Horie T. Multiple mechanisms in indomethacin-induced impairment of hepatic cytochrome P450 enzymes in rats. Gastroenterology. 2002;122:774–783.

    Article  PubMed  CAS  Google Scholar 

  10. Fujiyama N, Shitara Y, Ito K, Masubuchi Y, Horie T. Down-regulation of hepatic transporters for BSP in rats with indomethacin-induced intestinal injury. Biol Pharm Bull. 2007;30:556–561.

    Article  PubMed  CAS  Google Scholar 

  11. Faber KN, Muller M, Jansen PL. Drug transport proteins in the liver. Adv Drug Deliv Rev. 2003;55:107–124.

    Article  PubMed  CAS  Google Scholar 

  12. Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev. 2003;55:425–461.

    Article  PubMed  CAS  Google Scholar 

  13. Ignarro LJ. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989;3:31–36.

    PubMed  CAS  Google Scholar 

  14. Ignarro LJ. Endothelium-derived nitric oxide: pharmacology and relationship to the actions of organic nitrate esters. Pharm Res. 1989;6:651–659.

    Article  PubMed  CAS  Google Scholar 

  15. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology. 2007;15:252–259.

    Article  PubMed  CAS  Google Scholar 

  16. Evans SM, Whittle BJ. Interactive roles of superoxide and inducible nitric oxide synthase in rat intestinal injury provoked by non-steroidal anti-inflammatory drugs. Eur J Pharmacol. 2001;429:287–296.

    Article  PubMed  CAS  Google Scholar 

  17. Akiyama TE, Gonzalez FJ. Regulation of P450 genes by liver-enriched transcription factors and nuclear receptors. Biochim Biophys Acta. 2003;1619:223–234.

    Article  PubMed  CAS  Google Scholar 

  18. Tirona RG, Lee W, Leake BF, et al. The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat Med. 2003;9:220–224.

    Article  PubMed  CAS  Google Scholar 

  19. Denson LA, Auld KL, Schiek DS, McClure MH, Mangelsdorf DJ, Karpen SJ. Interleukin-1beta suppresses retinoid transactivation of two hepatic transporter genes involved in bile formation. J Biol Chem. 2000;275:8835–8843.

    Article  PubMed  CAS  Google Scholar 

  20. Kast HR, Goodwin B, Tarr PT, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002;277:2908–2915.

    Article  PubMed  CAS  Google Scholar 

  21. Denson LA, Bohan A, Held MA, Boyer JL. Organ-specific alterations in RAR alpha:RXR alpha abundance regulate rat Mrp2 (Abcc2) expression in obstructive cholestasis. Gastroenterology. 2002;123:599–607.

    Article  PubMed  CAS  Google Scholar 

  22. Li N, Hartley DP, Cherrington NJ, Klaassen CD. Tissue expression, ontogeny, and inducibility of rat organic anion transporting polypeptide 4. J Pharmacol Exp Ther. 2002;301:551–560.

    Article  PubMed  CAS  Google Scholar 

  23. Guo GL, Choudhuri S, Klaassen CD. Induction profile of rat organic anion transporting polypeptide 2 (oatp2) by prototypical drug-metabolizing enzyme inducers that activate gene expression through ligand-activated transcription factor pathways. J Pharmacol Exp Ther. 2002;300:206–212.

    Article  PubMed  CAS  Google Scholar 

  24. Li N, Klaassen CD. Role of liver-enriched transcription factors in the down-regulation of organic anion transporting polypeptide 4 (oatp4; oatplb2; slc21a10) by lipopolysaccharide. Mol Pharmacol. 2004;66:694–701.

    PubMed  CAS  Google Scholar 

  25. Jigorel E, Le Vee M, Boursier-Neyret C, Parmentier Y, Fardel O. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab Dispos. 2006;34:1756–1763.

    Article  PubMed  CAS  Google Scholar 

  26. Fang C, Yoon S, Tindberg N, Jarvelainen HA, Lindros KO, Ingelman-Sundberg M. Hepatic expression of multiple acute phase proteins and down-regulation of nuclear receptors after acute endotoxin exposure. Biochem Pharmacol. 2004;67:1389–1397. doi:10.1016/j.bcp.2003.12.012.

    Article  PubMed  CAS  Google Scholar 

  27. Gao F, Horie T. A synthetic analog of prostaglandin E(1) prevents the production of reactive oxygen species in the intestinal mucosa of methotrexate-treated rats. Life Sci. 2002;71:1091–1099.

    Article  PubMed  CAS  Google Scholar 

  28. Ito K, Koresawa T, Nakano K, Horie T. Mrp2 is involved in benzylpenicillin-induced choleresis. Am J Physiol Gastrointest Liver Physiol. 2004;287:G42–G49.

    Article  PubMed  CAS  Google Scholar 

  29. Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T. Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed Engl. 1999;38:3209–3212.

    Article  PubMed  CAS  Google Scholar 

  30. Geddes K, Philpott DJ. A new role for intestinal alkaline phosphatase in gut barrier maintenance. Gastroenterology. 2008;135:8–12.

    Article  PubMed  CAS  Google Scholar 

  31. Yamada T, Hoshino M, Hayakawa T, et al. Bile secretion in rats with indomethacin-induced intestinal inflammation. Am J Physiol. 1996;270:G804–G812.

    PubMed  CAS  Google Scholar 

  32. Cherrington NJ, Slitt AL, Li N, Klaassen CD. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab Dispos. 2004;32:734–741.

    Article  PubMed  CAS  Google Scholar 

  33. Aoki K, Nakajima M, Hoshi Y, et al. Effect of aminoguanidine on lipopolysaccharide-induced changes in rat liver transporters and transcription factors. Biol Pharm Bull. 2008;31:412–420.

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka Y, Chen C, Maher JM, Klaassen CD. Ischemia-reperfusion of rat livers decreases liver and increases kidney multidrug resistance associated protein 2 (Mrp2). Toxicol Sci. 2008;101:171–178. doi:10.1093/toxsci/kfm261.

    Article  PubMed  CAS  Google Scholar 

  35. Lopez-Sanchez LM, Corrales FJ, Barcos M, Espejo I, Munoz-Castaneda JR, Rodriguez-Ariza A. Inhibition of nitric oxide synthesis during induced cholestasis ameliorates hepatocellular injury by facilitating S-nitrosothiol homeostasis. Lab Invest. 2010;90:116–127. doi:10.1038/labinvest.2009.104.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by a Sasagawa Scientific Research Grant from the Japan Science Society. We are grateful to Drs. Yoshinori Nagata, Hiroyuki Kusuhara, and Yuichi Sugiyama of the University of Tokyo for kindly providing us with rat Oatp1b2 antibody.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Horie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiyama, N., Shitara, Y. & Horie, T. The Mechanism of the Down-Regulation of Hepatic Transporters in Rats with Indomethacin-Induced Intestinal Injury. Dig Dis Sci 58, 1891–1898 (2013). https://doi.org/10.1007/s10620-013-2587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2587-z

Keywords

Navigation