Skip to main content

Advertisement

Log in

Myosin Light Chain Kinase Inhibitor Inhibits Dextran Sulfate Sodium-Induced Colitis in Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Myosin light chain kinase (MLCK) plays a central role in the mechanisms of barrier dysfunction, and intestinal epithelial MLCK protein expression is upregulated in active ulcerative colitis (UC). ML-7, a MLCK inhibitor, has been used in many MLCK studies. However, the effect of ML-7 has never been estimated in colitis models. The aim of this study was to determine whether ML-7 can treat UC.

Methods

Experimental colitis was induced and ML-7 was administered by intraperitoneal injection. The disease activity index (DAI) scores were evaluated and colon tissue was collected for the assessment of histological changes, myeloperoxidase (MPO) activity, and tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-13 and interleukin (IL)-17 levels. The small intestinal mucosa was ultrastructurally examined, epithelial MLCK protein expression and enzymatic activity were determined, and intestinal permeability was assayed using FITC-dextran 4000 (FD-4) and Evans blue (EB).

Results

ML-7 was found to be significantly effective in reducing the DAI scores and histological index scores, and decreasing MPO activity and TNF-α, IFN-γ, IL-13 and IL-17 levels. The small intestinal epithelial MLCK protein expression and enzymatic activity were downregulated by ML-7. The epithelial cells and intercellular tight junctions were ameliorated, and the amount of FD-4 in blood and EB permeating into the intestine were decreased by ML-7 in colitis mice.

Conclusions

ML-7 has a significant anti-colitis effect in colitis mice. It is mainly associated with the inhibition of the epithelial MLCK protein expression, resulting in ameliorated intestinal mucosal permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnott ID, Kingstone K, Ghosh S. Abnormal intestinal permeability predicts relapse in inactive Crohn disease. Scand J Gastroenterol. 2000;35:1163–1169.

    Article  PubMed  CAS  Google Scholar 

  2. D’Incà R, Annese V, di Leo V, et al. Increased intestinal permeability and NOD2 variants in familial and sporadic Crohn’s disease. Aliment Pharmacol Ther. 2006;23:1455–1461.

    Article  PubMed  Google Scholar 

  3. Buhner S, Buning C, Genschel J, et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut. 2006;55:342–347.

    Google Scholar 

  4. Hilsden RJ, Meddings JB, Hardin J, et al. Intestinal permeability and postheparin plasma diamine oxidase activity in the prediction of Crohn’s disease relapse. Inflamm Bowel Dis. 1999;5:85–91.

    Article  PubMed  CAS  Google Scholar 

  5. Schwarz BT, Wang F, Shen L, et al. LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterology. 2007;132:2383–2394.

    Article  PubMed  CAS  Google Scholar 

  6. Berglund JJ, Riegler M, Zolotarevsky Y, Wenzl E, et al. Regulation of human jejunal transmucosal resistance and MLC phosphorylation by Na(+)-glucose cotransport. Am J Physiol. 2001;281:1487–1493.

    Google Scholar 

  7. Michel A, John C, et al. Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. Am J Physiol Gastrointest Liver Physiol. 2007;292:590–598.

    Google Scholar 

  8. Ferrier L, Mazelin L, Cenac N, et al. Stress-induced disruption of colonic epithelial barrier: role of interferon-gamma and myosin light chain kinase in mice. Gastroenterology. 2003;125:795–804.

    Article  PubMed  CAS  Google Scholar 

  9. Moriez R, Salvador-Cartier C, Theodorou V, et al. Myosin light chain kinase is involved in lipopolysaccharide- induced disruption of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol. 2005;167:1071–1079.

    Article  PubMed  CAS  Google Scholar 

  10. Scott KG, Meddings JB, Kirk DR, et al. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology. 2002;123:1179–1190.

    Article  PubMed  CAS  Google Scholar 

  11. Feighery LM, Cochrane SW, Quinn T, et al. Myosin light chain kinase inhibition: correction of increased intestinal epithelial permeability in vitro. Pharm Res. 2008;25:1377–1386.

    Article  PubMed  CAS  Google Scholar 

  12. Blair SA, Kane SV, Clayburgh DR, et al. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest. 2006;86:191–201.

    Article  PubMed  CAS  Google Scholar 

  13. Ye D, Ma I, Ma TY. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol. 2006;290:496–504.

    Article  Google Scholar 

  14. Ye D, Ma TY. Cellular and molecular mechanisms that mediate basal and tumour necrosis factor-alpha-induced regulation of myosin light chain kinase gene activity. J Cell Mol Med. 2008;12:1331–1346.

    Article  PubMed  CAS  Google Scholar 

  15. Weber CR, Raleigh DR, Su L, et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem. 2010;285:12037–12046.

    Article  PubMed  CAS  Google Scholar 

  16. Zolotarevsky Y, Hecht G, Koutsouris A, et al. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology. 2002;123:163–172.

    Article  PubMed  CAS  Google Scholar 

  17. Cury DH, Costa JE, Irika K, et al. Protective effect of octreotide and infliximab in an experimental model of indomethacin-induced inflammatory bowel disease. Dig Dis Sci. 2008;53:2516–2520.

    Article  PubMed  CAS  Google Scholar 

  18. Kihara N, de la Fuente SG, Fujino K, et al. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut. 2003;52:713–719.

    Article  PubMed  CAS  Google Scholar 

  19. Kannengiesser K, Maaser C, Heidemann J, et al. Melanocortin-derived tripeptide KPV has anti-inflammatory potential in murine models of inflammatory bowel disease. Inflamm Bowel Dis. 2008;14:324–331.

    Article  PubMed  Google Scholar 

  20. Bansal V, Costantini T, Kroll L, et al. Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis. J Neurotrauma. 2009;26:1353–1359.

    Article  PubMed  Google Scholar 

  21. Berruet N, Sentenac S, Auchere D, et al. Effect of efavirenz on intestinal p-glycoprotein and hepatic p450 function in rats. J Pharm Pharm Sci. 2005;8:226–234.

    PubMed  CAS  Google Scholar 

  22. van Sommeren S, Visschedijk MC, Festen EA, et al. HNF4α and CDH1 are associated with ulcerative colitis in a Dutch cohort. Inflamm Bowel Dis. 2011;17:1714–1718.

    Google Scholar 

  23. McGuckin MA, Eri R, Simms LA, et al. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis. 2009;15:100–113.

    Article  PubMed  Google Scholar 

  24. Fries W, Muja C, Crisafulli C, et al. Infliximab and etanercept are equally effective in reducing enterocyte APOPTOSIS in experimental colitis. Int J Med Sci. 2008;5:169–180.

    Article  PubMed  CAS  Google Scholar 

  25. Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol. 2007;23:379–383.

    Article  PubMed  CAS  Google Scholar 

  26. Okayasu I, Hatakeyama S, Yamada M, et al. A novel method of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.

    PubMed  CAS  Google Scholar 

  27. Gaudio E, Taddei G, Vetuschi A, et al. Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Dig Dis Sci. 1999;44:1458–1475.

    Article  PubMed  CAS  Google Scholar 

  28. Elson CO, Sartor RB, Tennyson GS, et al. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–1367.

    Article  PubMed  CAS  Google Scholar 

  29. Mennigen R, Nolte K, Rijcken E, et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296:1140–1149.

    Article  Google Scholar 

  30. Miyauchi E, Morita H, Tanabe S. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. J Dairy Res. 2009;92:2400–2408.

    Article  CAS  Google Scholar 

  31. Matsuda R, Koide T, Tokoro C, et al. Quantitive cytokine mRNA expression profiles in the colonic mucosa of patients with steroid naïve ulcerative colitis during active and quiescent disease. Inflamm Bowel Dis. 2009;15:328–334.

    Article  PubMed  Google Scholar 

  32. Olsen T, Goll R, Cui G, et al. Tissue levels of tumor necrosis factor-alpha correlates with grade of inflammation in untreated ulcerative colitis. Scand J Gastroenterol. 2007;42:1312–1320.

    Article  PubMed  CAS  Google Scholar 

  33. Heller F, Florian P, Bojarski C, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129:550–564.

    PubMed  CAS  Google Scholar 

  34. Ajduković J, Tonkić A, Salamunić I, et al. Interleukins IL-33 and IL-17/IL-17A in patients with ulcerative colitis. Hepatogastroenterology. 2010;57:1442–1444.

    PubMed  Google Scholar 

  35. Kamada N, Hisamatsu T, Honda H, et al. TL1A produced by lamina propria macrophages induces Th1 and Th17 immune responses in cooperation with IL-23 in patients with Crohn’s disease. Inflamm Bowel Dis. 2010;16:568–575.

    Article  PubMed  Google Scholar 

  36. Førland DT, Johnson E, Saetre L, et al. Effect of an extract based on the medicinal mushroom Agaricus blazei Murill on expression of cytokines and calprotectin in patients with ulcerative colitis and Crohn’s disease. Scand J Immunol. 2011;73:66–75.

    Article  PubMed  Google Scholar 

  37. Wang F, Graham WV, Wang Y, et al. Interferon-γ and tumor necrosis factor-α synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol. 2005;166:409–419.

    Article  PubMed  CAS  Google Scholar 

  38. Matsumura K, Nakase H, Yamamoto S, et al. Modulation of the Th1/Th2 balance by infliximab improves hyperthyroidism associated with a flare-up of ulcerative colitis. Inflamm Bowel Dis. 2009;15:967–968.

    Article  PubMed  Google Scholar 

  39. Kurtovic J, Segal I. Recent advances in biological therapy for inflammatory bowel disease. Trop Gastroenterol. 2004;25:9–14.

    PubMed  Google Scholar 

  40. Nishimoto N, Nakahara H, Yoshio-Hoshino N, et al. Successful treatment of a patient with Takayasu arteritis using a humanized anti-interleukin-6 receptor antibody. Arthritis Rheum. 2008;58:1197–1200.

    Article  PubMed  CAS  Google Scholar 

  41. Reenaers C, Louis E, Belaiche J. Current directions of biologic therapies in inflammatory bowel disease. Therap Adv Gastroenterol.. 2010;3:99–106.

    Article  PubMed  CAS  Google Scholar 

  42. Sandborn WJ. Is there a role for infliximab in the treatment of severe ulcerative colitis?: The American experience. Inflamm Bowel Dis. 2008;2:232–233.

    Google Scholar 

  43. Shields CJ, Winter DC. Infliximab for ulcerative colitis. N Engl J Med. 2006;354:1424–1426.

    Article  PubMed  CAS  Google Scholar 

  44. Ukena SN, Singh A, Dringenberg U, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One. 2007;2:1308.

    Article  Google Scholar 

  45. Ma TY, Anderson JM. Tight junctions and the intestinal barrier. In: Johnson LR, ed. Physiology of the gastrointestinal tract. 4th ed. Philadelphia, PA: Elsevier Science & Technology; 2006.

    Google Scholar 

  46. Ma TY, Boivin MA, Ye D, et al. Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol. 2005;288:422–430.

    Article  Google Scholar 

  47. Marchiando AM, Shen L, Graham WV, et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol. 2010;189:111–126.

    Article  PubMed  CAS  Google Scholar 

  48. Su L, Shen L, Clayburgh DR, et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology. 2009;136:551–563.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by a grant from the First Affiliated Hospital of Anhui Medical University. We thank Professor Ke Chen, Professor Wen Hu and Professor Daobing Wang for assistance with pathological technology, and we also thank Yuxian Shen, MD, PhD, Yongmei Hu, MD, Jiajia Wang, MD, and Qing Zhou, MD, for their support during the study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Xu, J., Mei, Q. et al. Myosin Light Chain Kinase Inhibitor Inhibits Dextran Sulfate Sodium-Induced Colitis in Mice. Dig Dis Sci 58, 107–114 (2013). https://doi.org/10.1007/s10620-012-2304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2304-3

Keywords

Navigation