Skip to main content

Advertisement

Log in

Hepatic Injury Due to Combined Choline-Deprivation and Thioacetamide Administration: An Experimental Approach to Liver Diseases

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The induction of prolonged choline-deprivation (CD) in rats receiving thioacetamide (TAA) is an experimental approach of mild hepatotoxicity that could resemble commonly presented cases in clinical practice (in which states of malnutrition and/or alcoholism are complicated by the development of other liver-associated diseases).

Aim

The present study aimed to investigate the time-dependent effects of a 30-, a 60- and a 90-day dietary CD and/or TAA administration on the adult rat liver histopathology and the serum markers of hepatic functional integrity.

Methods

Rats were divided into four main groups: (a) control, (b) CD, (c) TAA and (d) CD + TAA. Dietary CD was provoked through the administration of choline-deficient diet, while TAA administration was performed ad libitum through the drinking water (300 mg/l of drinking water).

Results

Histological examination of the CD + TAA liver sections revealed micro- and macro-vesicular steatosis with degeneration and primary fibrosis at day 30, to extensive steatosis and fibrosis at day 90. Steatosis was mostly of the macrovesicular type, involving all zones of the lobule, while inflammatory infiltrate consisted of foci of acute and chronic inflammatory cells randomly distributed in the lobule. These changes were accompanied by gradually increasing mitotic activity, as well as by a constantly high alpha-smooth muscle actin immunohistochemical staining. The determination of hepatocellular injury markers such as the serum enzyme levels’ of alanine aminotransferase and aspartate aminotransferase demonstrated a decrease at day 30 (they returned to control levels at days 60 and 90). However, the determination of those serum enzymes used for the assessment of cholestatic liver injury (gamma-glutamyltransferase, alkaline phosphatase) revealed a constant (time-independent) statistically-significant increase versus control values.

Conclusions

Long-term combined dietary CD and TAA administration could be a more realistic experimental approach to human liver diseases involving severe steatosis, fibrosis, stellate cell activation and significant regenerative hepatocellular response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Ingredients of the CDD: sucrose, coconut oil, starch wheat, dextrine, extracted peanut meal, soy protein, corn oil, dicalcium phosphate, cellulose, potassium citrate, sodium chloride, magnesium oxide, l-cystine, vitamin A, vitamin D3, vitamin E (alpha-tocopherol), copper (copper sulfate pentahydrate), selenium (sodium selenite). Analysis: protein (12 %), fat (16 %), fiber (2 %), ash (3.5 %).

References

  1. Blusztajn JK. Choline, a vital amine. Science. 1998;281:794–795.

    Article  PubMed  CAS  Google Scholar 

  2. Zeisel SH, Blusztajn JK. Choline and human nutrition. Annu Rev Nutr. 1994;14:269–296.

    Article  PubMed  CAS  Google Scholar 

  3. Buchman AL, Dubin M, Jenden D, et al. Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients. Gastroenterology. 1992;102:1363–1370.

    PubMed  CAS  Google Scholar 

  4. Canty DJ, Zeisel SH. Lecithin and choline in human health and disease. Nutr Rev. 1994;52:327–339.

    Article  PubMed  CAS  Google Scholar 

  5. Liapi C, Feskou I, Zarros A, Galanopoulou P, Tsakiris S. Effects of gestational and lactational choline deprivation on brain antioxidant status, acetylcholinesterase (Na+, K+)- and Mg2+-ATPase activities in offspring rats. Clin Chem Lab Med. 2007;45:651–656.

    Article  PubMed  CAS  Google Scholar 

  6. Zeisel SH. Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr. 1981;1:95–121.

    Article  PubMed  CAS  Google Scholar 

  7. Zeisel SH. Choline: an essential nutrient for humans. Nutrition. 2000;16:669–671.

    Article  PubMed  CAS  Google Scholar 

  8. da Costa KA, Cochary EF, Blusztajn JK, Garner SC, Zeisel SH. Accumulation of 1,2-sn-diradylglycerol with increased membrane associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline-deficient rats. J Biol Chem. 1993;268:2100–2105.

    PubMed  Google Scholar 

  9. Lombardi B, Pani P, Schlunk FF. Choline-deficiency fatty liver: impaired release of hepatic triglycerides. J Lipid Res. 1968;9:437–446.

    PubMed  CAS  Google Scholar 

  10. Buchman AL, Dubin MD, Moukarzel AA, et al. Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology. 1995;22:1399–1403.

    PubMed  CAS  Google Scholar 

  11. Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004;229:988–995.

    CAS  Google Scholar 

  12. Konstandi M, Segos D, Galanopoulou P, et al. Effects of choline-deprivation on paracetamol- or phenobarbital-induced rat liver metabolic response. J Appl Toxicol. 2009;29:101–109.

    Article  PubMed  CAS  Google Scholar 

  13. Veteläinen R, van Vliet A, van Gulik TM. Essential pathogenic and metabolic differences in steatosis induced by choline or methione-choline deficient diets in a rat model. J Gastroenterol Hepatol. 2007;22:1526–1533.

    Article  PubMed  Google Scholar 

  14. Fernández I, Fontana L, Gil A, Ríosc A, Torres MI. Dietary supplementation with monounsaturated and long-chain polyunsaturated fatty acids influences the liver structural recovery and hepatocyte binuclearity in female Wistar rats in experimental cirrhosis induced by thioacetamide. Exp Toxicol Pathol. 2005;57:65–75.

    Article  PubMed  Google Scholar 

  15. Pérez MJ, Sánchez-Medina F, Torres M, Gil A, Suárez A. Dietary nucleotides enhance the liver redox state and protein synthesis in cirrhotic rats. J Nutr. 2004;134:2504–2508.

    PubMed  Google Scholar 

  16. Yeh CN, Maitra A, Lee KF, Jan YY, Chen MF. Thioacetamide-induced intestinal-type cholangiocarcinoma in rat: an animal model recapitulating the multi-stage progression of human cholangiocarcinoma. Carcinogenesis. 2004;25:631–636.

    Article  PubMed  CAS  Google Scholar 

  17. Zimmermann T, Franke H, Dargel R. Biochemical and substructural studies on hepatic and serum lipoprotein metabolism after acute liver injury induced by thioacetamide in rats. Exp Pathol. 1985;28:225–233.

    Article  PubMed  CAS  Google Scholar 

  18. Pérez MJ, Suárez A, Gómez-Capilla JA, Sánchez-Medina F, Gil A. Dietary nucleotide supplementation reduces thioacetamide-induced liver fibrosis in rats. J Nutr. 2002;132:652–657.

    PubMed  Google Scholar 

  19. Wasser S, Tan CE. Experimental models of hepatic fibrosis in the rat. Ann Acad Med Singap. 1999;28:109–111.

    PubMed  CAS  Google Scholar 

  20. Fernández I, Torres I, Moreira E, Fontana L, Gil A, Rios A. Influence of administration of long-chain polyunsaturated fatty acids on process of histological recovery in liver cirrhosis produced by oral intake of thioacetamide. Dig Dis Sci. 1996;41:197–207.

    Article  PubMed  Google Scholar 

  21. Moreira E, Fontana L, Periago JL, Sanchéz De Medina F, Gil A. Changes in fatty acid composition of plasma, liver microsomes, and erythrocytes in liver cirrhosis induced by oral intake of thioacetamide in rats. Hepatology. 1995;21:199–206.

    PubMed  CAS  Google Scholar 

  22. Torres-López MI, Fernandez I, Fontana L, Gil A, Rios A. Influence of dietary nucleotides on liver structural recovery and hepatocyte binuclearity in cirrhosis induced by thioacetamide. Gut. 1996;38:260–264.

    Article  PubMed  Google Scholar 

  23. Zimmermann T, Müller A, Machnik G, Franke H, Schubert H, Dargel R. Biochemical and morphological studies on production and regression of experimental liver cirrhosis induced by thioacetamide in Uje: WIST rats. Z Versuchstierkd. 1987;30:165–180.

    PubMed  CAS  Google Scholar 

  24. Al-Bader A, Mathew TC, Abul H, Al-Sayer H, Singal PK, Dashti HM. Cholangiocarcinoma and liver cirrhosis in relation to changes due to thioacetamide. Mol Cell Biochem. 2000;208:1–10.

    Article  PubMed  CAS  Google Scholar 

  25. Avni Y, Shirin H, Aeed H, Shahmurov M, Birkenfeld S, Bruck R. Thioacetamide-induced hepatic damage in a rat nutritional model of steatohepatitis. Hepatol Res. 2004;30:141–147.

    Article  PubMed  CAS  Google Scholar 

  26. Zarros A, Theocharis S, Skandali N, Tsakiris S. Effects of fulminant hepatic encephalopathy on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na+, K+)- and Mg2+-ATPase: comparison of the enzymes’ response to in vitro treatment with ammonia. Metab Brain Dis. 2008;23:255–264.

    Article  PubMed  CAS  Google Scholar 

  27. Angulo P. GI epidemiology: nonalcoholic fatty liver disease. Aliment Pharmacol Ther. 2007;25:883–889.

    Article  PubMed  CAS  Google Scholar 

  28. Miller MH, Ferguson MA, Dillon JF. Systematic review of performance of non-invasive biomarkers in the evaluation of non-alcoholic fatty liver disease. Liver Int. 2011;31:461–473.

    Article  PubMed  Google Scholar 

  29. Neuschwander-Tetri BA. Fatty liver and the metabolic syndrome. Curr Opin Gastroenterol. 2007;23:193–198.

    Article  PubMed  CAS  Google Scholar 

  30. Al-Humadi H, Zarros A, Kyriakaki A, Al-Saigh R, Liapi C. Choline deprivation: an overview of the major hepatic metabolic response pathways. Scand J Gastroenterol. 2012. doi:10.3109/00365521.2012.685755.

  31. Jordao AA, Zanutto ME, Domenici FA, et al. Progression of lipid peroxidation measured as thiobarbituric acid reactive substances, damage to DNA and histopathological changes in the liver of rats subjected to a methionine–choline-deficient diet. Basic Clin Pharmacol Toxicol. 2009;105:150–155.

    Article  PubMed  CAS  Google Scholar 

  32. King J. The transferase-alanine and aspartate transaminase. In: Van D, ed. Practical Clinical Enzymology. London: Nostrand; 1965:121–138.

    Google Scholar 

  33. Persijn JP, van der Slik W. A new method for the determination of gamma-glutamyltransferase in serum. J Clin Chem Clin Biochem. 1976;14:421–427.

    PubMed  CAS  Google Scholar 

  34. Walter K, Schutt C. Acid and alkaline phosphatase in serum (two point method). In: Bergmeyer HU, ed. Methods in Enzymatic Analysis, vol. 2. London: Academic Press; 1974:856–860.

    Google Scholar 

  35. Liapi C, Feskou I, Zarros A, Carageorgiou H, Galanopoulou P, Tsakiris S. Equilibrated diet restores the effects of early age choline-deficient feeding on rat brain antioxidant status and enzyme activities: the role of homocysteine, l-phenylalanine and l-alanine. Metab Brain Dis. 2008;23:289–301.

    Article  PubMed  CAS  Google Scholar 

  36. Best CH, Huntsman ME. The effects of the components of lecithine upon deposition of fat in the liver. J Physiol. 1932;75:405–412.

    PubMed  CAS  Google Scholar 

  37. Hironaka K, Sakaida I, Uchida K, Okita K. Correlation between stellate cell activation and serum fibrosis markers in choline-deficient l-amino acid-defined diet-induced rat liver fibrosis. Dig Dis Sci. 2000;45:1935–1943.

    Article  PubMed  CAS  Google Scholar 

  38. Nieto N, Rojkind M. Repeated whiskey binges promote liver injury in rats fed a choline-deficient diet. J Hepatol. 2007;46:330–339.

    Article  PubMed  CAS  Google Scholar 

  39. Chandar N, Amenta J, Kandala JC, Lombardi B. Liver cell turnover in rats fed a choline-devoid diet. Carcinogenesis. 1987;8:669–673.

    Article  PubMed  CAS  Google Scholar 

  40. Veteläinen R, Bennink RJ, van Vliet AK, van Gulik TM. Mild steatosis impairs functional recovery after liver resection in an experimental model. Br J Surg. 2007;94:1002–1008.

    Article  PubMed  Google Scholar 

  41. Abanobi SE, Lombardi B, Shinozuka H. Stimulation of DNA synthesis and cell proliferation in the liver of rats fed a choline-devoid diet and their suppression by phenobarbital. Cancer Res. 1982;42:412–415.

    PubMed  CAS  Google Scholar 

  42. Albright CD, Zeisel SH. Choline deficiency causes increased localization of transforming growth factor-beta1 signaling proteins and apoptosis in the rat liver. Pathobiology. 1997;65:264–270.

    Article  PubMed  CAS  Google Scholar 

  43. Albright CD, da Costa KA, Craciunescu CN, Klem E, Mar MH, Zeisel SH. Regulation of choline deficiency apoptosis by epidermal growth factor in CWSV-1 rat hepatocytes. Cell Physiol Biochem. 2005;15:59–68.

    Article  PubMed  CAS  Google Scholar 

  44. Albright CD, Liu R, Bethea TC, Da Costa KA, Salganik RI, Zeisel SH. Choline deficiency induces apoptosis in SV40-immortalized CWSV-1 rat hepatocytes in culture. FASEB J. 1996;10:510–516.

    PubMed  CAS  Google Scholar 

  45. da Costa KA, Niculescu MD, Craciunescu CN, Fischer LM, Zeisel SH. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr. 2006;84:88–94.

    PubMed  Google Scholar 

  46. Müller D, Sommer M, Kretzschmar M, et al. Lipid peroxidation in thioacetamide-induced macronodular rat liver cirrhosis. Arch Toxicol. 1991;65:199–203.

    Article  PubMed  Google Scholar 

  47. Abul H, Mathew TC, Dashti HM, Al-Bader A. Level of superoxide dismutase, glutathione peroxidase and uric acid in thioacetamide-induced cirrhotic rats. Anat Histol Embryol. 2002;31:66–71.

    Article  PubMed  CAS  Google Scholar 

  48. Cruz A, Padillo FJ, Torres E, et al. Melatonin prevents experimental liver cirrhosis induced by thioacetamide in rats. J Pineal Res. 2005;39:143–150.

    Article  PubMed  CAS  Google Scholar 

  49. Muriel P, Moreno MG. Effects of silymarin and vitamins E and C on liver damage induced by prolonged biliary obstruction in the rat. Basic Clin Pharmacol Toxicol. 2004;94:99–104.

    PubMed  CAS  Google Scholar 

  50. Kawai H, Kudo N, Kawashima Y, Mitsumoto A. Efficacy of urine bile acid as a non-invasive indicator of liver damage in rats. J Toxicol Sci. 2009;34:27–38.

    Article  PubMed  CAS  Google Scholar 

  51. Letteron P, Fromenty B, Terris B, Degott C, Pessayre D. Acute and chronic hepatic steatosis lead to in vivo lipid peroxidation in mice. J Hepatol. 1996;24:200–208.

    Article  PubMed  CAS  Google Scholar 

  52. McCullough AJ. Update on nonalcoholic fatty liver disease. J Clin Gastroenterol. 2002;34:255–262.

    Article  PubMed  Google Scholar 

  53. James OF, Day CP. Non-alcoholic steatohepatitis (NASH): a disease of emerging identity and importance. J Hepatol. 1998;29:495–501.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Scholarships Foundation of the Hellenic Republic (in terms of a scholarship to Dr. Hussam Al-Humadi), as well as by the National and Kapodistrian University of Athens. The authors wish to acknowledge their appreciation to the medical students John Botis, Konstantinos Kalafatakis and Nikolina Skandali for their technical assistance.

Conflict of interest

No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis Liapi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Humadi, H., Theocharis, S., Dontas, I. et al. Hepatic Injury Due to Combined Choline-Deprivation and Thioacetamide Administration: An Experimental Approach to Liver Diseases. Dig Dis Sci 57, 3168–3177 (2012). https://doi.org/10.1007/s10620-012-2299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2299-9

Keywords

Navigation