Skip to main content

Advertisement

Log in

Protein profiles of peripheral blood mononuclear cells are useful for differential diagnosis of ulcerative colitis and Crohn’s disease

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Effective biomarkers for discrimination between ulcerative colitis (UC) and Crohn’s disease (CD) have not been established yet. In this study, we analyzed protein profiles of peripheral blood mononuclear cells (PBMCs) of the patients to find such a biomarker.

Methods

Peripheral blood mononuclear cell proteins from 17 UC patients, 13 CD patients, and 17 healthy controls were separated by two-dimensional gel electrophoresis. The intensities of individual protein spots were subjected to discriminant analysis of UC and CD using the SIMCA-P+program.

Results

We found that 547 protein spots were commonly detected among the UC, CD, and healthy groups. Orthogonal partial least squares-discriminant analysis using 276 protein spots clearly discriminated the UC patients from the CD patients (R 2 0.994; Q 2 0.462). A similar analysis using a further selected 58 protein spots showed higher performance for discrimination of the diseases (R 2 0.948; Q 2 0.566). Eleven out of the 58 protein spots were successfully identified; these were functionally related to inflammation, oxidation/reduction, the cytoskeleton, endocytotic trafficking, and transcription. In addition, the PBMC protein profiles were useful for the prediction of disease activity in the UC and the CD patients, and they were also useful for predicting disease severity and responses to treatments in the UC patients.

Conclusions

PBMC protein profiles are useful for the discrimination of UC from CD. The profiles could be a potent biomarker for the differential diagnosis of these diseases. Further investigation of the proteins which contributed to the discrimination could promote elucidation of the pathophysiology of UC and CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z, et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet. 2001;29:223–8.

    Article  CAS  PubMed  Google Scholar 

  2. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  CAS  PubMed  Google Scholar 

  3. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.

    Article  CAS  PubMed  Google Scholar 

  4. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet. 2004;36:471–5.

    Article  CAS  PubMed  Google Scholar 

  5. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314:1461–3.

    Article  CAS  PubMed  Google Scholar 

  6. Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126:1620–33.

    Article  PubMed  Google Scholar 

  7. Blumberg RS, Saubermann LJ, Strober W. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol. 1999;11:648–56.

    Article  CAS  PubMed  Google Scholar 

  8. Parronchi P, Romagnani P, Annunziato F, Sampognaro S, Becchio A, Giannarini L, et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn’s disease. Am J Pathol. 1997;150:823–32.

    CAS  PubMed  Google Scholar 

  9. Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol. 1996;157:1261–70.

    CAS  PubMed  Google Scholar 

  10. Kobayashi T, Okamoto S, Hisamatsu T, Kamada N, Chinen H, Saito R, et al. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut. 2008;57:1682–9.

    Article  CAS  PubMed  Google Scholar 

  11. Imamura Y, Kurokawa MS, Yoshikawa H, Nara K, Takada E, Masuda C, et al. Involvement of Th1 cells and heat shock protein 60 in the pathogenesis of intestinal Behcet’s disease. Clin Exp Immunol. 2005;139:371–8.

    Article  CAS  PubMed  Google Scholar 

  12. Legnani PE, Kornbluth A. Difficult differential diagnoses in IBD: ileitis and indeterminate colitis. Semin Gastrointest Dis. 2001;12:211–22.

    CAS  PubMed  Google Scholar 

  13. Vasiliauskas E. Recent advances in the diagnosis and classification of inflammatory bowel disease. Curr Gastroenterol Rep. 2003;5:493–500.

    Article  PubMed  Google Scholar 

  14. Landers CJ, Cohavy O, Misra R, Yang H, Lin YC, Braun J, et al. Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology. 2002;123:689–99.

    Article  CAS  PubMed  Google Scholar 

  15. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology. 2005;129:550–64.

    CAS  PubMed  Google Scholar 

  16. Sands BE. From symptom to diagnosis: clinical distinctions among various forms of intestinal inflammation. Gastroenterology. 2004;126:1518–32.

    Article  PubMed  Google Scholar 

  17. Leichtner AM, Jackson WD, Grand RJ. Ulcerative colitis. In: Walker W, editor. Pediatric gastrointestinal disease. 2nd ed. St. Louis: Mosby; 1996. p. 712–25.

    Google Scholar 

  18. Leichtner AM, Jackson WD, Grand RJ. Crohn’s disease. In: Walker W, editor. Pediatric gastrointestinal disease. 2nd ed. St. Louis: Mosby; 1996. p. 692–711.

    Google Scholar 

  19. Walmsley RS, Ayres RC, Pounder RE, Allan RN. A simple clinical colitis activity index. Gut. 1998;43:29–32.

    Article  CAS  PubMed  Google Scholar 

  20. Myren J, Bouchier IA, Watkinson G, Softley A, Clamp SE, de Dombal FT. The O.M.G.E. Multinational Inflammatory Bowel Disease Survey 1976–1982. A further report on 2,657 cases. Scand J Gastroenterol Suppl. 1984;95:1–27.

    CAS  PubMed  Google Scholar 

  21. SIMCA-P and Multivariate Analysis: Frequently Asked Questions (2009). http://www.umetrics.com/download/KB/Multivariate%20FAQ.pdf. Accessed 30 June 2009.

  22. Olives JP, Breton A, Hugot JP, Oksman F, Johannet C, Ghisolfi J, et al. Antineutrophil cytoplasmic antibodies in children with inflammatory bowel disease: prevalence and diagnostic value. J Pediatr Gastroenterol Nutr. 1997;25:142–8.

    Article  CAS  PubMed  Google Scholar 

  23. Reese GE, Constantinides VA, Simillis C, Darzi AW, Orchard TR, Fazio VW, et al. Diagnostic precision of anti-Saccharomyces cerevisiae antibodies and perinuclear antineutrophil cytoplasmic antibodies in inflammatory bowel disease. Am J Gastroenterol. 2006;101:2410–22.

    Article  CAS  PubMed  Google Scholar 

  24. Saito H, Fukuda Y, Katsuragi K, Tanaka M, Satomi M, Shimoyama T, et al. Isolation of peptides useful for differential diagnosis of Crohn’s disease and ulcerative colitis. Gut. 2003;52:535–40.

    Article  CAS  PubMed  Google Scholar 

  25. Chen CS, Sullivan S, Anderson T, Tan AC, Alex PJ, Brant SR, et al. Identification of novel serological biomarkers for inflammatory bowel disease using E. coli proteome chip. Mol Cell Proteomics. 2009;8:1765–76.

    Article  CAS  PubMed  Google Scholar 

  26. von Stein P, Lofberg R, Kuznetsov NV, Gielen AW, Persson JO, Sundberg R, et al. Multigene analysis can discriminate between ulcerative colitis, Crohn’s disease, and irritable bowel syndrome. Gastroenterology. 2008;134:1869–81.

    Article  Google Scholar 

  27. Pasikanti KK, Ho PC, Chan EC. Development and validation of a gas chromatography/mass spectrometry metabonomic platform for the global profiling of urinary metabolites. Rapid Commun Mass Spectrom. 2008;22:2984–92.

    Article  CAS  PubMed  Google Scholar 

  28. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. 2009;8:352–61.

    Article  CAS  PubMed  Google Scholar 

  29. Arora K, Gwinn WM, Bower MA, Watson A, Okwumabua I, MacDonald HR, et al. Extracellular cyclophilins contribute to the regulation of inflammatory responses. J Immunol. 2005;175:517–22.

    CAS  PubMed  Google Scholar 

  30. Sherry B, Yarlett N, Strupp A, Cerami A. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci USA. 1992;89:3511–5.

    Article  CAS  PubMed  Google Scholar 

  31. Jin ZG, Melaragno MG, Liao DF, Yan C, Haendeler J, Suh YA, et al. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res. 2000;87:789–96.

    CAS  PubMed  Google Scholar 

  32. Seko Y, Fujimura T, Taka H, Mineki R, Murayama K, Nagai R. Hypoxia followed by reoxygenation induces secretion of cyclophilin A from cultured rat cardiac myocytes. Biochem Biophys Res Commun. 2004;317:162–8.

    Article  CAS  PubMed  Google Scholar 

  33. Wood ZA, Schroder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28:32–40.

    Article  CAS  PubMed  Google Scholar 

  34. Pravda J. Radical induction theory of ulcerative colitis. World J Gastroenterol. 2005;11:2371–84.

    CAS  PubMed  Google Scholar 

  35. Vogl T, Ludwig S, Goebeler M, Strey A, Thorey IS, Reichelt R, et al. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood. 2004;104:4260–8.

    Article  CAS  PubMed  Google Scholar 

  36. Supuran CT. Carbonic anhydrases—an overview. Curr Pharm Des. 2008;14:603–14.

    Article  CAS  PubMed  Google Scholar 

  37. Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut. 2004;53:987–92.

    Article  CAS  PubMed  Google Scholar 

  38. Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G, et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet. 2008;40:1319–23.

    Article  CAS  PubMed  Google Scholar 

  39. Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S, Prescott NJ, et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet. 2008;40:710–2.

    Article  CAS  PubMed  Google Scholar 

  40. Dieckgraefe BK, Stenson WF, Korzenik JR, Swanson PE, Harrington CA. Analysis of mucosal gene expression in inflammatory bowel disease by parallel oligonucleotide arrays. Physiol Genomics. 2000;4:1–11.

    CAS  PubMed  Google Scholar 

  41. Mannick EE, Bonomolo JC, Horswell R, Lentz JJ, Serrano MS, Zapata-Velandia A, et al. Gene expression in mononuclear cells from patients with inflammatory bowel disease. Clin Immunol. 2004;112:247–57.

    Article  CAS  PubMed  Google Scholar 

  42. Hsieh SY, Shih TC, Yeh CY, Lin CJ, Chou YY, Lee YS. Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics. 2006;6:5322–31.

    Article  CAS  PubMed  Google Scholar 

  43. Berndt U, Bartsch S, Philipsen L, Danese S, Wiedenmann B, Dignass AU, et al. Proteomic analysis of the inflamed intestinal mucosa reveals distinctive immune response profiles in Crohn’s disease and ulcerative colitis. J Immunol. 2007;179:295–304.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate Ms Michiyo Yokoyama and Ms Mie Kanke for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manae S. Kurokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatsugai, M., Kurokawa, M.S., Kouro, T. et al. Protein profiles of peripheral blood mononuclear cells are useful for differential diagnosis of ulcerative colitis and Crohn’s disease. J Gastroenterol 45, 488–500 (2010). https://doi.org/10.1007/s00535-009-0183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0183-y

Keywords

Navigation