Skip to main content

Advertisement

Log in

ZEB2 Promotes the Metastasis of Gastric Cancer and Modulates Epithelial Mesenchymal Transition of Gastric Cancer Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Invasion and metastasis are the hallmarks of advanced gastric cancer progression. Therefore, it is urgent to overcome metastasis in order to improve the survival of gastric cancer patients.

Aims

This study aimed to examine the expression of ZEB2 in gastric cancer samples and analyze its correlation with clinicopathologic features. In addition, the molecular mechanism by which ZEB2 contributes to gastric cancer metastasis will be explored.

Methods

ZEB2 expression in clinical gastric cancer samples was evaluated by immunohistochemical analysis. ZEB2 was knocked-down in HGC27 gastric cancer cells by shRNA and the effects on cell invasion and migration were examined by in vitro cell invasion and migration assays. The expression of epithelial marker E-cadherin, mesenchymal markers fibronecin and vimentin, and MMPs was detected by western blot analysis.

Results

The expression of ZEB2 was positively correlated with the depth of invasion, lymph node metastasis and TNM stage. In addition, patients with positive ZEB2 expression showed a significantly shorter overall survival time than did patients with negative ZEB2. shRNA mediated knockdown of ZEB2 resulted in reduced invasion and migration of HGC27 cells, along with the upregulation of E-cadherin and downregulation of fibronecin, vimentin, MMP2, and MMP9.

Conclusions

ZEB2 expression is closely associated with the clinicopathological parameters of gastric cancer. ZEB2 promotes gastric cancer cell migration and invasion at least partly via the regulation of epithelial-mesenchymal transition. ZEB2 is a potential target for gene therapy of aggressive gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Catalano V, Labianca R, Beretta GD, Gatta G, de Braud F, Van Cutsem E. Gastric cancer. Crit Rev Oncol Hematol. 2005;54:209–241.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–2917.

    Article  PubMed  CAS  Google Scholar 

  3. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–454.

    Article  PubMed  CAS  Google Scholar 

  4. Cardiff RD. Epithelial to mesenchymal transition tumors: fallacious or snail’s pace? Clin Cancer Res. 2005;11:8534–8553.

    Article  PubMed  CAS  Google Scholar 

  5. Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. 2005;65:5991–5995.

    Article  PubMed  CAS  Google Scholar 

  6. Batlle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–89.

    Article  PubMed  CAS  Google Scholar 

  7. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  PubMed  CAS  Google Scholar 

  8. Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62:1613–1618.

    PubMed  CAS  Google Scholar 

  9. Vernon AE, LaBonne C. Tumor metastasis: a new twist on epithelial-mesenchymal transitions. Curr Biol. 2004;14:R719–R721.

    Article  PubMed  CAS  Google Scholar 

  10. Perez-Moreno MA, Locascio A, Rodrigo I, et al. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem. 2001;276:27424–27431.

    Article  PubMed  CAS  Google Scholar 

  11. Comijn J, Berx G, Vermassen P, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7:1267–1278.

    Article  PubMed  CAS  Google Scholar 

  12. Eger A, Aigner K, Sonderegger S, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005;24:2375–2385.

    Article  PubMed  CAS  Google Scholar 

  13. Van de Putte T, Maruhashi M, Francis A, et al. Mice lacking Zfhx1b, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am J Hum Genet. 2003;72:465–470.

    Article  PubMed  Google Scholar 

  14. Vandewalle C, Comijn J, De Craene B, et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell–cell junctions. Nucleic Acids Res. 2005;33:6566–6578.

    Article  PubMed  CAS  Google Scholar 

  15. Sayan AE, Griffiths TR, Pal R, et al. SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proc Natl Acad Sci USA. 2009;106:14884–14889.

    Article  PubMed  CAS  Google Scholar 

  16. Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002;161:1881–1891.

    Article  PubMed  CAS  Google Scholar 

  17. Ohta H, Aoyagi K, Fukaya M, et al. Cross talk between hedgehog and epithelial–mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers. Br J Cancer. 2009;100:389–398.

    Article  PubMed  CAS  Google Scholar 

  18. Elloul S, Elstrand MB, Nesland JM, et al. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–1643.

    Article  PubMed  CAS  Google Scholar 

  19. Yoshihara K, Tajima A, Komata D, et al. Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis. Cancer Sci. 2009;100:1421–1428.

    Article  PubMed  CAS  Google Scholar 

  20. Imamichi Y, Konig A, Gress T, Menke A. Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer. Oncogene. 2007;26:2381–2385.

    Article  PubMed  CAS  Google Scholar 

  21. Maeda G, Chiba T, Okazaki M, et al. Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int J Oncol. 2005;27:1535–1541.

    PubMed  CAS  Google Scholar 

  22. Sobin LH, Gospodarowicz MK, Wittekind C. UICC TNM classification of malignant tumours. 7th ed. New York: Wiley-Blackwell; 2009.

    Google Scholar 

  23. Li YZ, Zhao P, Han WD. Clinicopathological significance of LRP16 protein in 336 gastric carcinoma patients. World J Gastroenterol. 2009;15:4833–4837.

    Article  PubMed  CAS  Google Scholar 

  24. Verschueren K, Remacle JE, Collart C, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem. 1999;274:20489–20498.

    Article  PubMed  CAS  Google Scholar 

  25. Cowin P, Rowlands TM, Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol. 2005;17:499–508.

    Article  PubMed  CAS  Google Scholar 

  26. Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosom Cancer. 2002;34:255–268.

    Article  PubMed  CAS  Google Scholar 

  27. Rashid MG, Sanda MG, Vallorosi CJ, Rios-Doria J, Rubin MA, Day ML. Posttranslational truncation and inactivation of human E-cadherin distinguishes prostate cancer from matched normal prostate. Cancer Res. 2001;61:489–492.

    PubMed  CAS  Google Scholar 

  28. Guilford P, Hopkins J, Harraway J, et al. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392:402–405.

    Article  PubMed  CAS  Google Scholar 

  29. Van Aken E, De Wever O, Correia da Rocha AS, Mareel M. Defective E-cadherin/catenin complexes in human cancer. Virchows Arch. 2001;439:725–751.

    PubMed  Google Scholar 

  30. Bindels S, Mestdagt M, Vanderwalle C, et al. Regulation of vimentin by Sip1 in human epithelial breast tumor cells. Oncogene. 2006;25:4975–4985.

    Article  PubMed  CAS  Google Scholar 

  31. Miyoshi A, Kitajima Y, Sumi K, et al. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer. 2004;90:1265–1273.

    Article  PubMed  CAS  Google Scholar 

  32. Xia M, Hu M, Wang J, et al. Identification of the role of Smad interacting protein 1 (SIP1) in glioma. J Neurooncol. 2010;97:225–232.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Project of Science and Technology Bureau of Hunan Province, China (2011FJ6025).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Rong Huo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, YH., Tang, YP., Zhu, HY. et al. ZEB2 Promotes the Metastasis of Gastric Cancer and Modulates Epithelial Mesenchymal Transition of Gastric Cancer Cells. Dig Dis Sci 57, 1253–1260 (2012). https://doi.org/10.1007/s10620-012-2042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2042-6

Keywords

Navigation