Skip to main content
Log in

Gut-Brain Chemokine Changes in Portal Hypertensive Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Hepatic encephalopathy is a syndrome whose physiopathology is poorly understood; therefore, current diagnostic tests are imperfect and modern therapy is nonspecific. Particularly, it has been suggested that inflammation plays an important role in the pathogenesis of portal hypertensive encephalopathy in the rat.

Aim

We have studied an experimental model of portal hypertension based on a triple partial portal vein ligation in the rat to verify this hypothesis.

Methods

One month after portal hypertension we assayed in the splanchnic area (liver, small bowel and mesenteric lymph nodes) and in the central nervous system (hippocampus and cerebellum) fractalkine (CX3CL1) and stromal cell-derived factor alpha (SDF1-α) as well as their respective receptors (CX3CR1 and CXCR4) because of their key role in inflammatory processes.

Results

The significant increase of fractalkine in mesenteric lymph nodes (P < 0.05) and its receptor (CX3CR1) in the small bowel (P < 0.05) and hippocampus (P < 0.01), associated with the increased expression of SDF1-α in the hippocampus (P < 0.01) and the cerebellum (P < 0.01) suggest that prehepatic portal hypertension in the rat induces important alterations in the expression of chemokines in the gut-brain axis.

Conclusion

The present study revealed that portal hypertension is associated with splanchnic-brain inflammatory alterations mediated by chemokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zafirova Z, O’Connor M. Hepatic encephalopathy: current management strategies and treatment, including management and monitoring of cerebral edema and intracraneal hypertension in fulminant hepatic failure. Curr Opin Anaesthesiol. 2010;23:121–127.

    Article  PubMed  Google Scholar 

  2. Ferenci P, Lockwood A, Muller K, Tarter R, Weissenborn K, Blei AT. Hepatic encephalopathy-definition, nomenclature, diagnosis and quantification. Final report of the working party at the 11th World Congress of Gastroenterology, Vienna 1998. Hepatology. 2002;35:716–721.

    Article  PubMed  Google Scholar 

  3. Sundaram V, Shaikh OS. Hepatic encephalopathy: Physiopathology and emerging therapies. Med Clin N Am. 2009;93:819–836.

    Article  PubMed  CAS  Google Scholar 

  4. Mínguez B, García-Pagán JC, Bosch J, et al. Noncirrhotic portal vein thrombosis exhibits neuropsychological and MR changes consistent with minimal hepatic encephalopathy. Hepatology. 2006;46:707–714.

    Article  Google Scholar 

  5. Yadav SK, Srivastava A, Srivastava A, et al. Encephalopathy assessment in children with extra-hepatic portal vein obstruction with MR, psychometry and critical flicker frequency. J Hepatol. 2010;52:348–354.

    Article  PubMed  Google Scholar 

  6. Sikuler E, Kravetz D, Groszmann RJ. Evolution of portal hypertension and mechanisms involved in its maintenance in a rat model. Am J Pharmacol. 1985;248:G618–G625.

    CAS  Google Scholar 

  7. Abraldes JG, Pasarin M, García-Pagán JC. Animal models of portal hypertesion. World J Gastroenterol. 2006;12:6577–6584.

    PubMed  Google Scholar 

  8. Aller MA, Méndez M, Nava MP, López L, Arias JL, Arias J. The value of microsurgery in liver research. Liver Int. 2009;29:1132–1140.

    Article  PubMed  Google Scholar 

  9. Aller MA, Méndez M, Nava MP, et al. Portal surgery: Portosystemic shunts and portal hypertension. In: Aller MA, Arias J, eds. Microsurgery in Liver Research. Bentham Scientific e-books. 2009;117–136.

  10. Shawcross D, Jalan R. The physiopathological basis of hepatic encephalopathy: central role for ammonia and inflammation. Cell Mol Life Sci. 2005;62:2295–2304.

    Article  PubMed  CAS  Google Scholar 

  11. Shawcross DL, Wright G, Olde Damink SWM, Jalan R. Role of ammonia and inflammation in minimal hepatic encephalopathy. Metab Brain Dis. 2007;22:125–138.

    Article  PubMed  CAS  Google Scholar 

  12. Shawcross DL, Shabbir SS, Taylor NJ, Hughes RD. Ammonia and the neutrophil in the pathogenesis of hepatic encephalopathy in cirrhosis. Hepatology. 2010;51:1062–1069.

    Article  PubMed  CAS  Google Scholar 

  13. Arias JL, Aller MA, Sánchez-Patán F, Arias J. The inflammatory bases of hepatic encephalopathy. Eur J Gastroenterol Hepatol. 2006;18:1297–1310.

    Article  PubMed  Google Scholar 

  14. Aller MA, Arias JL, Cruz A, Arias J. Inflammation: a way to understanding the evolution of portal hypertension. Theor Biol Med Model. 2007;4:44–69.

    Article  PubMed  Google Scholar 

  15. Bendall L. Chemokines and their receptors in disease. Histol Histopathol. 2005;20:907–926.

    PubMed  CAS  Google Scholar 

  16. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354:610–621.

    Article  PubMed  CAS  Google Scholar 

  17. Ubogu EE, Cossoy MB, Ransohoff RM. The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci. 2006;27:48–55.

    Article  PubMed  CAS  Google Scholar 

  18. Monterde G, Rodríguez-Fabián G, Vara E, et al. Increased plasma levels of corticosterone and prolactine and decreased T3 and T4 levels in short-term prehepatic portal hypertension in rats. Dig Dis Sci. 2000;45:1865–1871.

    Article  PubMed  CAS  Google Scholar 

  19. Paxinos G, Watson C. The Rat Brain In Stereotaxic Coordinates. Compact 2nd Edition. London: Academic Press; 1997.

    Google Scholar 

  20. Lynch MA, Voss KL. Presynaptic changes in long-term potentiation: elevated synaptosomal calcium concentration and basal phosphoinositide turnover in dentate gyrus. J Neurochem. 1991;1:113–118.

    Article  Google Scholar 

  21. Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem. 1976;72:248–254.

    Article  PubMed  CAS  Google Scholar 

  22. Merino JJ, Cordero MI, Sandi C. Regulation of hippocampal cell adhesion molecules NCAM and L1 by contextual fear conditioning is dependent upon time and stressor intensity. Eur J Neurosci. 2000;12:3283–3290.

    Article  PubMed  CAS  Google Scholar 

  23. Sandi C, Merino JJ, Cordero MI, Touyarot K, Venero C. Effects of chronic stress on contextual fear conditioning and the hippocampal expression of the neural cell adhesion molecule, its polysialylation, and L1. Neuroscience. 2001;102:329–339.

    Article  PubMed  CAS  Google Scholar 

  24. Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev. 2005;16:553–560.

    Article  PubMed  CAS  Google Scholar 

  25. Aller MA, Arias JL, Arias J. The mast cell integrates the splanchnic and systemic inflammatory response in portal hypertension. J Transl Med. 2007;5:44–59.

    Article  PubMed  Google Scholar 

  26. Díez-Arias JA, Aller MA, Palma MD, et al. Increased duodenal mucosa infiltration by mast cells in rats with portal hypertension. Dig Surg. 2001;18:34–40.

    Article  PubMed  Google Scholar 

  27. Llamas MA, Aller MA, Marquina D, Nava MP, Arias J. Bacterial translocation to mesenteric lymph nodes increases in chronic portal hypertensive rats. Dig Dis Sci. 2010;55:2244–2254.

    Article  PubMed  Google Scholar 

  28. Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ. Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev. 2006;217:304–328.

    Article  Google Scholar 

  29. Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307:254–258.

    Article  PubMed  CAS  Google Scholar 

  30. Alonso MJ, Aller MA, Corcuera MT, et al. Progressive hepatocytic fatty infiltration in rats with prehepatic portal hypertension. Hepatogastroenterology. 2005;52:541–546.

    PubMed  CAS  Google Scholar 

  31. Simpson KJ, Henderson NC, Bone-Larson CL, Lukacs NW, Hogaboam CM, Kunkel SL. Chemokines in the pathogenesis of liver disease: so many players with poorly defined roles. Clin Sci. 2003;104:47–63.

    Article  PubMed  CAS  Google Scholar 

  32. Palma MD, Aller MA, Vara E, et al. Portal hypertension produces an evolutive hepato-intestinal pro- and anti-inflammatory response in the rat. Cytokine. 2005;31:213–226.

    Article  PubMed  CAS  Google Scholar 

  33. Sánchez-Patán F, Anchuelo R, Aller MA, et al. Chronic prehepatic portal hypertension in the rat: is it a type of metabolic inflammatory syndrome? Lipids Health Dis. 2008;7:4–13.

    Article  PubMed  Google Scholar 

  34. Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem Cells. 2005;23:879–894.

    Article  PubMed  CAS  Google Scholar 

  35. Kasiyanov A, Fujii N, Tamamura H, Xiong H. Modulation of network-driven, GABA-mediated giant depolarizing potentials by SDF-1alpha in the developing hippocampus. Dev Neurosci. 2008;30:285–292.

    Article  PubMed  CAS  Google Scholar 

  36. Barbieri F, Bajetto A, Porcile C, Pattarozzi A, Schettini G, Florio T. Role of stromal cell-derived factor 1 (SDF1/CXCL12) in regulating anterior pituitary function. J Mol Endocrinol. 2007;38:383–389.

    Article  PubMed  CAS  Google Scholar 

  37. Guerin E, Sheridan C, Assheton D, et al. SDF-1-alpha is associated with VEGFR-2 in human choroidal neovascularization. Microvasc Res. 2008;75:302–307.

    Article  PubMed  CAS  Google Scholar 

  38. Guyon A, Nahon J-L. Multiple actions of the chemokine stromal cell-derived factor-1α on neuronal activity. J Mol Endocrinol. 2007;38:365–376.

    Article  PubMed  CAS  Google Scholar 

  39. Bertollini C, Ragozzino D, Gross C, Limatola C, Eusebi F. Fractalkine/CX3CL1 depresses central synaptic transmission in mouse hippocampal slices. Neuropharmacology. 2006;51:816–821.

    Article  PubMed  CAS  Google Scholar 

  40. Butterworth RF. Pathogenesis of hepatic encephalopathy: new insights from neuroimaging and molecular studies. J Hepatol. 2003;29:278–285.

    Article  Google Scholar 

  41. Weissenborn K, Bokemeyer M, Ahl B, et al. Functional imaging of the brain in patients with liver cirrhosis. Metab Brain Dis. 2004;19:269–280.

    Article  PubMed  Google Scholar 

  42. Weissenborn K, Giewekemeyer K, Heidenreich S, Bokemeyer M, Berding G, Ahl B. Attention, memory and cognitive function in hepatic encephalopathy. Metab Brain Dis. 2005;20:359–367.

    Article  PubMed  Google Scholar 

  43. Lores-Arnaiz S, Perazzo JC, Prestifilipo JP, et al. Hippocampal mitochondrial dysfunction with decreased mtNOS activity in prehepatic portal hypertensive rats. Neurochem Int. 2005;47:362–368.

    Article  PubMed  CAS  Google Scholar 

  44. Acosta GB, Fernández MA, Rosello DM, Tomaro ML, Balestrasse K, Lemberg A. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats. World J Gastroenterol. 2009;15:2893–2899.

    Article  PubMed  CAS  Google Scholar 

  45. Nikonenko AG, Radenovic L, Andjus PR, Skibo GG. Structural features of ischemic damage in the hippocampus. Anat Rec. 2009;292:1914–1921.

    Article  CAS  Google Scholar 

  46. Méndez M, Méndez-López M, López L, et al. Spatial memory alterations in three models of hepatic encephalopathy. Behav Brain Res. 2008;188:32–40.

    Article  PubMed  Google Scholar 

  47. Méndez M, Méndez-López M, López L, Aller MA, Arias J, Arias JL. Working memory impairment and reduced hippocampal and prefrontal cortex c-Fos expression in a rat model of cirrhosis. Physiol Behav. 2008;95:302–307.

    Article  PubMed  Google Scholar 

  48. Santin LJ, Rubio S, Begega A, Arias JL. Effects of mammillary body lesions on spatial reference and working memory tasks. Behav Brain Res. 1999;102:137–150.

    Article  PubMed  CAS  Google Scholar 

  49. Méndez M, Méndez-López M, López L, Aller MA, Arias J, Arias JL. Mammillary body alterations and spatial memory impairment in Wistar rats with thioacetamide-induced cirrhosis. Brain Res. 2008;1233:185–195.

    Article  PubMed  Google Scholar 

  50. Kerschensteiner M, Meinl E, Hohlfeld R. Neuro-immune crosstalk in CNS diseases. Neuroscience. 2009;158:1122–1132.

    Article  PubMed  CAS  Google Scholar 

  51. Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005;26:349–354.

    Article  PubMed  CAS  Google Scholar 

  52. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–1765.

    Article  PubMed  CAS  Google Scholar 

  53. De Haas AH, Van Weering HRJ, De Jong EK, Boddeke HWGM, Biber KPH. Neuronal chemokines: Versatile messengers in central nervous system cell interaction. Mol Neurobiol. 2007;36:137–151.

    Article  PubMed  Google Scholar 

  54. Lauro C, Di Angelantonio S, Cipriani R, et al. Activity of adenosin receptors Type 1 is required for CX3CL-1-mediated neuroprotection and neuromodulation. J Immunol. 2008;180:7590–7596.

    PubMed  CAS  Google Scholar 

  55. Wikgren J, Nokia MS, Penttonen M. Hippocampo-cerebellar theta band phase synchrony in rabbits. Neuroscience. 2010;165:1538–1545.

    Article  PubMed  CAS  Google Scholar 

  56. Leuner B, Gould E, Shors TJ. Is there a link between adult neurogenesis and learning? Hippocampus. 2006;16:216–224.

    Article  PubMed  Google Scholar 

  57. Lu M, Grove EA, Miller RJ. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. PNAS. 2002;99:7090–7095.

    Article  PubMed  CAS  Google Scholar 

  58. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595–599.

    Article  PubMed  CAS  Google Scholar 

  59. Martino G. How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS-disorders. Lancet Neurol. 2004;3:372–378.

    Article  PubMed  CAS  Google Scholar 

  60. Martell M, Coll M, Ezkurdia N, Raurell I, Genesca J. Physiopathology of splanchnic vasodilation in portal hypertension. World J Hepatol. 2010;2:208–220.

    Article  PubMed  Google Scholar 

  61. Meucci O, Fatatis A, Simen AA, Miller RJ. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. PNAS. 2000;97:8075–8080.

    Article  PubMed  CAS  Google Scholar 

  62. Juremalm M, Nilsson G. Chemokine receptor expression by mast cells. Chem Immunol Allergy. 2005;87:130–144.

    Article  PubMed  CAS  Google Scholar 

  63. Bischoff SC. Physiological and physiopathological functions of intestinal mast cells. Semin Immunopathol. 2009;31:185–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Maria Elena Vicente for her invaluable assistance in preparing the manuscript and Elizabeth Mascola for translating it. This study was supported in part with grants from the “Mutua Madrileña” Research Foundation (FMM Ref. No. AP69772009 and Ref. No. AP59662009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Angeles Aller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merino, J., Aller, MA., Rubio, S. et al. Gut-Brain Chemokine Changes in Portal Hypertensive Rats. Dig Dis Sci 56, 2309–2317 (2011). https://doi.org/10.1007/s10620-011-1625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1625-y

Keywords

Navigation