Skip to main content

Advertisement

Log in

Physiological and pathophysiological functions of intestinal mast cells

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The normal gastrointestinal (GI) mucosa is equipped with mast cells that account for 2–3% of lamina propria cells under normal conditions. Mast cells are generally associated with allergic disease, and indeed, food allergy that manifests in the GI tract is usually mast cell dependent. On the other hand, mast cells have a number of physiological functions in the GI tract, namely regulatory functions such as control of blood flow and coagulation, smooth muscle contraction and peristalsis, and secretion of acid, electrolytes, and mucus by epithelial cells. One of the most intriguing functions of intestinal mast cells is their role in host defense against microbes like bacteria, viruses, or parasites. Mast cells recognize microbes by antibody-dependent mechanisms and through pattern-recognition receptors. They direct the subsequent immune response by attracting both granulocytes and lymphocytes to the site of challenge via paracrine cytokine release. Moreover, mast cells initiate, by releasing proinflammatory mediators, innate defense mechanisms such as enhanced epithelial secretion, peristalsis, and alarm programs of the enteric nervous This initiation can occur in response to a primary contact to the microbe or other danger signals, but becomes much more effective if the triggering antigen reappears and antibodies of the IgE or IgG type have been generated in the meantime by the specific immune system. Thus, mast cells operate at the interface between innate and adaptive immune responses to enhance the defense against pathogens and, most likely, the commensal flora. In this respect, it is important to note that mast cells are directly involved in controlling the function of the intestinal barrier that turned out to be a crucial site for the development of infectious and immune-mediated diseases. Hence, intestinal mast cells perform regulatory functions to maintain tissue homeostasis, they are involved in host defense mechanisms against pathogens, and they can induce allergy once they are sensitized against foreign antigens. The broad spectrum of functions makes mast cells a fascinating target for future pharmacological or nutritional interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gurish MF, Austen KF (2001) The diverse roles of mast cells. J Exp Med 194:F1–F5

    Article  CAS  PubMed  Google Scholar 

  2. Bischoff SC, Wedemeyer J, Herrmann A et al (1996) Quantitative assessment of intestinal eosinophils and mast cells in inflammatory bowel disease. Histopathology 28:1–13

    Article  CAS  PubMed  Google Scholar 

  3. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    Article  CAS  PubMed  Google Scholar 

  4. Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4:787–799

    Article  CAS  PubMed  Google Scholar 

  5. Bischoff SC (2007) Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7:93–104

    Article  CAS  PubMed  Google Scholar 

  6. Costa JJ, Weller PF, Galli SJ (1997) The cells of the allergic response: mast cells, basophils, and eosinophils. JAMA 278:1815–1822

    Article  CAS  PubMed  Google Scholar 

  7. Bischoff SC, Crowe SE (2005) Gastrointestinal food allergy: new insights into pathophysiology and clinical perspectives. Gastroenterology 128:1089–1113

    Article  CAS  PubMed  Google Scholar 

  8. Brightling CE, Bradding P (2005) The re-emergence of the mast cell as a pivotal cell in asthma pathogenesis. Curr Allergy Asthma Rep 5:130–135

    Article  CAS  PubMed  Google Scholar 

  9. Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA (2004) New insights into atopic dermatitis. J Clin Invest 113:651–657

    CAS  PubMed  Google Scholar 

  10. Kirshenbaum AS, Kessler SW, Goff JP, Metcalfe DD (1991) Demonstration of the origin of human mast cells from CD34+ bone marrow progenitor cells. J Immunol 146:1410–1415

    CAS  PubMed  Google Scholar 

  11. Mitsui H, Furitsu T, Dvorak AM et al (1993) Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand. Proc Natl Acad Sci U S A 90:735–739

    Article  CAS  PubMed  Google Scholar 

  12. Toru H, Eguchi M, Matsumoto R et al (1998) Interleukin-4 promotes the development of tryptase and chymase double-positive human mast cells accompanied by cell maturation. Blood 91:187–195

    CAS  PubMed  Google Scholar 

  13. Denburg JA (1992) Basophil and mast cell lineages in vitro and in vivo. Blood 79:846–860

    CAS  PubMed  Google Scholar 

  14. Agis H, Füreder W, Bankl HC et al (1996) Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes. Immunology 87:535–543

    Article  CAS  PubMed  Google Scholar 

  15. Nakajima T, Matsumoto K, Suto H et al (2001) Gene expression screening of human mast cells and eosinophils using high-density oligonucleotide probe arrays: abundant expression of major basic protein in mast cells. Blood 98:1127–1134

    Article  CAS  PubMed  Google Scholar 

  16. Foster B, Schwartz LB, Devouassoux G, Metcalfe DD, Prussin C (2002) Characterization of mast cell tryptase-expressing peripheral blood cells as basophils. J Allergy Clin Immunol 109:287–293

    Article  CAS  PubMed  Google Scholar 

  17. Ito T, Nishiyama C, Nishiyama M et al (2005) Mast cells acquire monocyte-specific gene expression and monocyte-like morphology by overproduction of PU.1. J Immunol 174:376–383

    CAS  PubMed  Google Scholar 

  18. Kempuraj D, Saito H, Kaneko A et al (1999) Characterization of mast cell-committed progenitors present in human umbilical cord blood. Blood 93:3338–3346

    CAS  PubMed  Google Scholar 

  19. Kocabas CN, Yavuz AS, Lipsky PE, Metcalfe DD, Akin C (2005) Analysis of the lineage relationship between mast cells and basophils using the c-kit D816V mutation as a biologic signature. J Allergy Clin Immunol 115:1155–1161

    Article  CAS  PubMed  Google Scholar 

  20. Razin E, Ihle JN, Seldin D et al (1984) Interleukin 3: a differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J Immunol 132:1479–1486

    CAS  PubMed  Google Scholar 

  21. Valent P, Besemer J, Sillaber C, Butterfield JH et al (1990) Failure to detect IL-3-binding sites on human mast cells. J Immunol 145:3432–3437

    CAS  PubMed  Google Scholar 

  22. Gebhardt T, Sellge G, Lorentz A et al (2002) Cultured human intestinal mast cells express functional IL-3 receptors and respond to IL-3 by enhancing growth and IgE receptor-dependent mediator release. Eur J Immunol 32:2308–2316

    Article  CAS  PubMed  Google Scholar 

  23. Kurimoto Y, De Weck AL, Dahinden CA (1991) The effect of interleukin 3 upon IgE-dependent and IgE-independent basophil degranulation and leukotriene generation. Eur J Immunol 21:361–368

    Article  CAS  PubMed  Google Scholar 

  24. Bischoff SC, Sellge G, Lorentz A, Sebald W, Raab R, Manns MP (1999) IL-4 enhances proliferation and mediator release in mature human mast cells. Proc Natl Acad Sci U S A 96:8080–8085

    Article  CAS  PubMed  Google Scholar 

  25. Mierke CT, Ballmaier M, Werner U, Manns MP, Welte K, Bischoff SC (2000) Human endothelial cells regulate survival and proliferation of human mast cells. J Exp Med 192:801–811

    Article  CAS  PubMed  Google Scholar 

  26. Lorentz A, Schuppan D, Gebert A, Manns MP, Bischoff SC (2002) Regulatory effects of stem cell factor and interleukin-4 on adhesion of human mast cells to extracellular matrix proteins. Blood 99:966–972

    Article  CAS  PubMed  Google Scholar 

  27. Bischoff SC, Dahinden CA (1992) c-kit ligand: a unique potentiator of mediator release by human lung mast cells. J Exp Med 175:237–244

    Article  CAS  PubMed  Google Scholar 

  28. Undem BJ, Lichtenstein LM, Hubbard WC, Meeker S, Ellis JL (1994) Recombinant stem cell factor-induced mast cell activation and smooth muscle contraction in human bronchi. Am J Respir Cell Mol Biol 11:646–650

    CAS  PubMed  Google Scholar 

  29. Taylor ML, Metcalfe DD (2000) Kit signal transduction. Hematol Oncol Clin North Am 14:517–535

    Article  CAS  PubMed  Google Scholar 

  30. Tkaczyk C, Horejsi V, Iwaki S (2004) NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and Fc epsilon RI aggregation. Blood 104:207–214

    Article  CAS  PubMed  Google Scholar 

  31. Hundley TR, Gilfillan AM, Tkaczyk C, Andrade MV, Metcalfe DD, Beaven MA (2004) Kit and FcepsilonRI mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood 104:2410–2417

    Article  CAS  PubMed  Google Scholar 

  32. Iwaki S, Tkaczyk C, Satterthwaite AB, Halcomb K, Beaven MA, Metcalfe DD, Gilfillan AM (2005) Btk plays a crucial role in the amplification of Fc epsilonRI-mediated mast cell activation by kit. J Biol Chem 280:40261–40270

    Article  CAS  PubMed  Google Scholar 

  33. Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6:218–230

    Article  CAS  PubMed  Google Scholar 

  34. Matsuda K, Piliponsky AM, Iikura M et al (2005) Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. J Allergy Clin Immunol 116:1357–1363

    Article  CAS  PubMed  Google Scholar 

  35. Kulka M, Metcalfe DD (2005) High-resolution tracking of cell division demonstrates differential effects of TH1 and TH2 cytokines on SCF-dependent human mast cell production in vitro: correlation with apoptosis and Kit expression. Blood 105:592–599

    Article  CAS  PubMed  Google Scholar 

  36. Lorentz A, Schwengberg S, Sellge G, Manns MP, Bischoff SC (2000) Human intestinal mast cells are capable of producing different cytokine profiles: role of IgE receptor cross-linking and IL-4. J Immunol 164:43–48

    CAS  PubMed  Google Scholar 

  37. Lorentz A, Wilke M, Sellge G, Worthmann H, Klempnauer J, Manns MP, Bischoff SC (2005) IL-4-induced priming of human intestinal mast cells for enhanced survival and Th2 cytokine generation is reversible and associated with increased activity of ERK1/2 and c-Fos. J Immunol 174:675–676

    Google Scholar 

  38. Okayama Y, Hagaman DD, Metcalfe DD (2001) A comparison of mediators released or generated by IFN-gamma-treated human mast cells following aggregation of Fc gamma RI or Fc epsilon RI. J Immunol 166:4705–4712

    CAS  PubMed  Google Scholar 

  39. Sellge G, Laffer S, Mierke C, Vrtala S, Hoffmann MW, Klempnauer J, Manns MP, Valenta R, Bischoff SC (2005) Development of an in vitro system for the study of allergens and allergen-specific immunoglobulin E and immunoglobulin G: Fcepsilon receptor I supercross-linking is a possible new mechanism of immunoglobulin G-dependent enhancement of type I allergic reactions. Clin Exp Allergy 35:774–781

    Article  CAS  PubMed  Google Scholar 

  40. Guhl S, Lee HH, Babina M, Henz BM, Zuberbier T (2005) Evidence for a restricted rather than generalized stimulatory response of skin-derived human mast cells to substance P. J Neuroimmunol 163:92–101

    Article  CAS  PubMed  Google Scholar 

  41. Bischoff SC, Schwengberg S, Lorentz A (2004) Substance P and other neuropeptides do not induce mediator release in isolated human intestinal mast cells. Neurogastroenterol Motil 16:185–193

    Article  CAS  PubMed  Google Scholar 

  42. van der Kleij HP, Ma D, Redegeld FA, Kraneveld AD, Nijkamp FP, Bienenstock J (2003) Functional expression of neurokinin 1 receptors on mast cells induced by IL-4 and stem cell factor. J Immunol 171:2074–2079

    PubMed  Google Scholar 

  43. Miyazaki D, Nakamura T, Toda M, Cheung-Chau KW, Richardson RM, Ono SJ (2005) Macrophage inflammatory protein-1alpha as a costimulatory signal for mast cell-mediated immediate hypersensitivity reactions. J Clin Invest 115:434–442

    CAS  PubMed  Google Scholar 

  44. Santos J, Saperas E, Nogueiras C, Mourelle M, Antolin M, Cadahia A, Malagelada JR (1998) Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology 114:640–648

    Article  CAS  PubMed  Google Scholar 

  45. Sander LE, Lorentz A, Sellge G et al (2006) Selective expression of histamine receptors H1R, H2R, and H4R, but not H3R, in the human intestinal tract. Gut 55:498–504

    Article  CAS  PubMed  Google Scholar 

  46. Sirois J, Menard G, Moses AS, Bissonnette EY (2000) Importance of histamine in the cytokine network in the lung through H2 and H3 receptors: stimulation of IL-10 production. J Immunol 164:2964–2970

    CAS  PubMed  Google Scholar 

  47. Jutel M, Watanabe T, Klunker S (2001) Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413:420–425

    Article  CAS  PubMed  Google Scholar 

  48. Yu LC, Perdue MH (2001) Role of mast cells in intestinal mucosal function: studies in models of hypersensitivity and stress. Immunol Rev 179:61–73

    Article  CAS  PubMed  Google Scholar 

  49. Russell DA (1986) Mast cells in the regulation of intestinal electrolyte transport. Am J Physiol 251:G253–G262

    CAS  PubMed  Google Scholar 

  50. Castells M, Austen KF (2002) Mastocytosis: mediator-related signs and symptoms. Int Arch Allergy Immunol 127:147–152

    Article  CAS  PubMed  Google Scholar 

  51. Jeffery P, Zhu J (2002) Mucin-producing elements and inflammatory cells. Novartis Found Symp 248:51–68

    Article  CAS  PubMed  Google Scholar 

  52. Wood JD (2004) Enteric neuroimmunophysiology and pathophysiology. Gastroenterology 127:635–657

    Article  CAS  PubMed  Google Scholar 

  53. Ito A, Hagiyama M, Oonuma J (2008) Nerve-mast cell and smooth muscle-mast cell interaction mediated by cell adhesion molecule-1, CADM1. J Smooth Muscle Res 44:83–93

    Article  PubMed  Google Scholar 

  54. Van Nassauw L, Adriaensen D, Timmermans JP (2007) The bidirectional communication between neurons and mast cells within the GI tract. Auton Neurosci 133:91–103

    Article  PubMed  CAS  Google Scholar 

  55. Okumura S, Kashiwakura J, Tomita H, Matsumoto K, Nakajima T, Saito H, Okayama Y (2003) Identification of specific gene expression profiles in human mast cells mediated by Toll-like receptor 4 and FcepsilonRI. Blood 102:2547–2554

    Article  CAS  PubMed  Google Scholar 

  56. Varadaradjalou S, Feger F, Thieblemont N, Hamouda NB, Pleau JM, Dy M, Arock M (2003) Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol 33:899–906

    Article  CAS  PubMed  Google Scholar 

  57. Cherwinski HM, Murphy CA, Joyce BL (2005) The CD200 receptor is a novel and potent regulator of murine and human mast cell function. J Immunol 174:1348–1356

    CAS  PubMed  Google Scholar 

  58. Gebhardt T, Lorentz A, Detmer F, Trautwein C, Bektas H, Manns MP, Bischoff SC (2005) Growth, phenotype, and function of human intestinal mast cells are tightly regulated by transforming growth factor beta1. Gut 54:928–934

    Article  CAS  PubMed  Google Scholar 

  59. Royer B, Varadaradjalou S, Saas P, Guillosson JJ, Kantelip JP, Arock M (2001) Inhibition of IgE-induced activation of human mast cells by IL-10. Clin Exp Allergy 31:694–704

    Article  CAS  PubMed  Google Scholar 

  60. Sansonetti PJ (2008) Host–bacteria homeostasis in the healthy and inflamed gut. Curr Opin Gastroenterol 24:435–439

    Article  PubMed  Google Scholar 

  61. Wehkamp J, Fellermann K, Herrlinger KR, Bevins CL, Stange EF (2005) Mechanisms of disease: defensins in gastrointestinal diseases. Nat Clin Pract Gastroenterol Hepatol 2:406–415

    Article  CAS  PubMed  Google Scholar 

  62. Demaude J, Salvador-Cartier C, Fioramonti J, Ferrier L, Bueno L (2006) Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 55:655–661

    Article  CAS  PubMed  Google Scholar 

  63. Ferrier L, Berard F, Debrauwer L, Chabo C, Langella P, Bueno L, Fioramonti J (2006) Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol 168:1148–1154

    Article  CAS  PubMed  Google Scholar 

  64. Jacob C, Yang PC, Darmoul D et al (2005) Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J Biol Chem 280:31936–31948

    Article  CAS  PubMed  Google Scholar 

  65. McDermott JR, Bartram RE, Knight PA, Miller HR, Garrod DR, Grencis RK (2003) Mast cells disrupt epithelial barrier function during enteric nematode infection. Proc Natl Acad Sci U S A 100:7761–7766

    Article  CAS  PubMed  Google Scholar 

  66. Soderholm JD, Yang PC, Ceponis P, Vohra A, Riddell R, Sherman PM, Perdue MH (2002) Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 123:1099–1108

    Article  PubMed  Google Scholar 

  67. Krämer S, Sellge G, Lorentz A, Krueger D, Schemann M, Feilhauer K, Gunzer F, Bischoff SC (2008) Selective activation of human intestinal mast cells by Escherichia coli hemolysin. J Immunol 181:1438–1445

    PubMed  Google Scholar 

  68. Leal-Berumen I, Snider DP, Barajas-Lopez C, Marshall JS (1996) Cholera toxin increases IL-6 synthesis and decreases TNF-alpha production by rat peritoneal mast cells. J Immunol 156:316–321

    CAS  PubMed  Google Scholar 

  69. Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN (1999) The mast cell tumor necrosis factor alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-anchored molecule CD48. Proc Natl Acad Sci U S A 96:8110–8115

    Article  CAS  PubMed  Google Scholar 

  70. Schramm G, Falcone FH, Gronow A et al (2003) Molecular characterization of an interleukin-4-inducing factor from Schistosoma mansoni eggs. J Biol Chem 278:18384–18392

    Article  CAS  PubMed  Google Scholar 

  71. Schramm G, Gronow A, Knobloch J et al (2006) IPSE/alpha-1: a major immunogenic component secreted from Schistosoma mansoni eggs. Mol Biochem Parasitol 147:9–19

    Article  CAS  PubMed  Google Scholar 

  72. Knight PA, Wright SH, Lawrence CE, Paterson YY, Miller HR (2000) Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 192:1849–1856

    Article  CAS  PubMed  Google Scholar 

  73. Woodbury RG, Miller HR, Huntley JF, Newlands GF, Palliser AC, Wakelin D (1984) Mucosal mast cells are functionally active during spontaneous expulsion of intestinal nematode infections in rat. Nature 312:450–452

    Article  CAS  PubMed  Google Scholar 

  74. Finkelman FD, Urban JF Jr (2001) The other side of the coin: the protective role of the TH2 cytokines. J Allergy Clin Immunol 107:772–780

    Article  CAS  PubMed  Google Scholar 

  75. Lawrence CE, Paterson YY, Wright SH, Knight PA, Miller HR (2004) Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology 127:155–165

    Article  CAS  PubMed  Google Scholar 

  76. Finkelman FD, Shea-Donohue T, Morris SC, Gildea L, Strait R, Madden KB, Schopf L, Urban JF Jr (2004) Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol Rev 201:139–155

    Article  CAS  PubMed  Google Scholar 

  77. Knight PA, Brown JK, Pemberton AD (2008) Innate immune response mechanisms in the intestinal epithelium: potential roles for mast cells and goblet cells in the expulsion of adult Trichinella spiralis. Parasitology 135:655–670

    Article  CAS  PubMed  Google Scholar 

  78. Brunner T, Heusser CH, Dahinden CA (1993) Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J Exp Med 177:605–611

    Article  CAS  PubMed  Google Scholar 

  79. Min B, Prout M, Hu-Li J et al (2004) Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J Exp Med 200:507–517

    Article  CAS  PubMed  Google Scholar 

  80. Helmby H, Grencis RK (2002) IL-18 regulates intestinal mastocytosis and Th2 cytokine production independently of IFN-gamma during Trichinella spiralis infection. J Immunol 169:2553–2560

    CAS  PubMed  Google Scholar 

  81. Boyce JA (2003) Mast cells: beyond IgE. J Allergy Clin Immunol 111:24–32

    Article  CAS  PubMed  Google Scholar 

  82. Echtenacher B, Mannel DN, Hultner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381:75–77

    Article  CAS  PubMed  Google Scholar 

  83. Malaviya R, Ikeda T, Ross E, Abraham SN (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381:77–80

    Article  CAS  PubMed  Google Scholar 

  84. Malaviya R, Abraham SN (2000) Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. J Leukoc Biol 67:841–846

    CAS  PubMed  Google Scholar 

  85. McLachlan JB, Hart JP, Pizzo SV, Shelburne CP, Staats HF, Gunn MD, Abraham SN (2003) Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol 4:1199–1205

    Article  CAS  PubMed  Google Scholar 

  86. Jawdat DM, Rowden G, Marshall JS (2006) Mast cells have a pivotal role in TNF-independent lymph node hypertrophy and the mobilization of Langerhans cells in response to bacterial peptidoglycan. J Immunol 177:1755–1762

    CAS  PubMed  Google Scholar 

  87. Matsuo T, Ikura Y, Ohsawa M et al (2003) Mast cell chymase expression in Helicobacter pylori-associated gastritis. Histopathology 43:538–549

    Article  CAS  PubMed  Google Scholar 

  88. Raqib R, Moly PK, Sarker P, Qadri F, Alam NH, Mathan M, Andersson J (2003) Persistence of mucosal mast cells and eosinophils in Shigella-infected children. Infect Immun 71:2684–2692

    Article  CAS  PubMed  Google Scholar 

  89. Pulimood AB, Mathan MM, Mathan VI (1998) Quantitative and ultrastructural analysis of rectal mucosal mast cells in acute infectious diarrhea. Dig Dis Sci 43:2111–2116

    Article  CAS  PubMed  Google Scholar 

  90. Kulka M, Fukuishi N, Rottem M, Mekori YA, Metcalfe DD (2006) Mast cells, which interact with Escherichia coli, up-regulate genes associated with innate immunity and become less responsive to Fc(epsilon) RI-mediated activation. J Leukoc Biol 79:339–350

    Article  CAS  PubMed  Google Scholar 

  91. Cumberbatch M, Dearman RJ, Griffiths CE, Kimber I (2000) Langerhans cell migration. Clin Exp Dermatol 25:413–418

    Article  CAS  PubMed  Google Scholar 

  92. Poncet P, Arock M, David B (1999) MHC class II-dependent activation of CD4+ T cell hybridomas by human mast cells through superantigen presentation. J Leukoc Biol 66:105–112

    CAS  PubMed  Google Scholar 

  93. Marone G, Florio G, Petraroli A, Triggiani M, de Paulis A (2001) Human mast cells and basophils in HIV-1 infection. Trends Immunol 22:229–232

    Article  CAS  PubMed  Google Scholar 

  94. Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, Bulfone-Paus S (2005) TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 106:978–987

    Article  CAS  PubMed  Google Scholar 

  95. Kulka M, Metcalfe DD (2006) TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin. Mol Immunol 43:1579–1586

    Article  CAS  PubMed  Google Scholar 

  96. Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114:174–182

    Article  CAS  PubMed  Google Scholar 

  97. Lu LF, Lind EF, Gondek DC (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002

    Article  CAS  PubMed  Google Scholar 

  98. Mitre E, Norwood S, Nutman TB (2005) Saturation of immunoglobulin E (IgE) binding sites by polyclonal IgE does not explain the protective effect of helminth infections against atopy. Infect Immun 73:4106–4111

    Article  CAS  PubMed  Google Scholar 

  99. Wills-Karp M, Santeliz J, Karp CL (2001) The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol 1:69–75

    Article  CAS  PubMed  Google Scholar 

  100. Akdis M, Akdis CA (2007) Mechanisms of allergen-specific immunotherapy. J Allergy Clin Immunol 119:780–791

    Article  CAS  PubMed  Google Scholar 

  101. Rao KN, Brown MA (2008) Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci 1143:83–104

    Article  CAS  PubMed  Google Scholar 

  102. Bachelet I, Levi-Schaffer F, Mekori YA (2006) Mast cells: not only in allergy. Immunol Allergy Clin North Am 26:407–425

    Article  PubMed  Google Scholar 

  103. Maurer M, Theoharides T, Granstein RD, Bischoff SC et al (2003) What is the physiological function of mast cells? Exp Dermatol 12:886–910

    Article  CAS  PubMed  Google Scholar 

  104. Bjorksten B (2001) The epidemiology of food allergy. Curr Opin Allergy Clin Immunol 1:225–227

    Article  CAS  PubMed  Google Scholar 

  105. Grundy J, Matthews S, Bateman B, Dean T, Arshad SH (2002) Rising prevalence of allergy to peanut in children: data from 2 sequential cohorts. J Allergy Clin Immunol 110:784–789

    Article  PubMed  Google Scholar 

  106. Zuberbier T, Edenharter G, Worm M, Ehlers I, Reimann S, Hantke T, Roehr CC, Bergmann KE, Niggemann B (2004) Prevalence of adverse reactions to food in Germany—a population study. Allergy 59:338–345

    Article  CAS  PubMed  Google Scholar 

  107. Brandtzaeg PE (2002) Current understanding of gastrointestinal immunoregulation and its relation to food allergy. Ann N Y Acad Sci 964:13–45

    Article  CAS  PubMed  Google Scholar 

  108. Coombs RR (1992) The Jack Pepys Lecture. The hypersensitivity reactions—some personal reflections. Clin Exp Allergy 22:673–680

    Article  CAS  PubMed  Google Scholar 

  109. Furuta GT, Schmidt-Choudhury A, Wang MY, Wang ZS, Lu L, Furlano RI, Wershil BK (1997) Mast cell-dependent tumor necrosis factor alpha production participates in allergic gastric inflammation in mice. Gastroenterology 113:1560–1569

    Article  CAS  PubMed  Google Scholar 

  110. Malaviya R, Navara C, Uckun FM (2001) Role of Janus kinase 3 in mast cell-mediated innate immunity against gram-negative bacteria. Immunity 15:313–321

    Article  CAS  PubMed  Google Scholar 

  111. Dahlen SE, Kumlin M (2004) Monitoring mast cell activation by prostaglandin D2 in vivo. Thoraxm 59:453–455

    Article  Google Scholar 

  112. Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavrod ID (2002) Mast cell infiltration of airway smooth muscle in asthma. N Engl J Med 346:1699–1705

    Article  PubMed  Google Scholar 

  113. Oguma T, Palmer LJ, Birben E, Sonna LA, Asano K, Lilly CM (2004) Role of prostanoid DP receptor variants in susceptibility to asthma. N Engl J Med 351:1752–1763

    Article  CAS  PubMed  Google Scholar 

  114. Bradding P, Feather IH, Wilson S, Barding PG, Heusser CH, Holgate ST, Howarth PH (1993) Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol 151:3853–3865

    CAS  PubMed  Google Scholar 

  115. Mukai K, Matsuoka K, Taya C, Suzuki H, Yokozeki H, Nishioka K, Hirokawa K, Etori M, Yamashita M, Kubota T, Minegishi Y, Yonekawa H, Karasuyama H (2005) Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity 23:191–202

    Article  CAS  PubMed  Google Scholar 

  116. Majamaa H, Laine S, Miettinen A (1999) Eosinophil protein X and eosinophil cationic protein as indicators of intestinal inflammation in infants with atopic eczema and food allergy. Clin Exp Allergy 29:1502–1506

    Article  CAS  PubMed  Google Scholar 

  117. Bischoff SC, Mayer J, Wedemeyer J, Meier PN, Zeck-Kapp G, Wedi B, Kapp A, Cetin Y, Gebel M, Manns MP (1997) Colonoscopic allergen provocation (COLAP): a new diagnostic approach for gastrointestinal food allergy. Gut 40:745–753

    Article  CAS  PubMed  Google Scholar 

  118. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, Collins SM, Corinaldesi R (2004) Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126:693–702

    Article  PubMed  Google Scholar 

  119. Blumer N, Herz U, Wegmann M, Renz H (2005) Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy 35:397–402

    Article  CAS  PubMed  Google Scholar 

  120. Rook GA, Brunet LR (2005) Microbes, immunoregulation, and the gut. Gut 54:317–320

    Article  CAS  PubMed  Google Scholar 

  121. Garn H, Renz H (2007) Epidemiological and immunological evidence for the hygiene hypothesis. Immunobiology 212:441–452

    Article  CAS  PubMed  Google Scholar 

  122. Guarner F, Bourdet-Sicard R, Brandtzaeg P, Gill HS, McGuirk P, van Eden W, Versalovic J, Weinstock JV, Rook GA (2006) Mechanisms of disease: the hygiene hypothesis revisited. Nat Clin Pract Gastroenterol Hepatol 3:275–284

    Article  CAS  PubMed  Google Scholar 

  123. Rook GA (2009) Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology 126:3–11

    Article  CAS  PubMed  Google Scholar 

  124. Spiegl N, Didichenko S, McCaffery P, Langen H, Dahinden CA (2008) Human basophils activated by mast cell-derived IL-3 express retinaldehyde dehydrogenase-II and produce the immunoregulatory mediator retinoic acid. Blood 112:3762–3771

    Article  CAS  PubMed  Google Scholar 

  125. Stephensen CB (2001) Vitamin A, infection, and immune function. Annu Rev Nutr 21:167–192

    Article  CAS  PubMed  Google Scholar 

  126. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY (2004) Retinoic acid imprints gut homing specificity on T cells. Immunity 21:527–538

    Article  CAS  PubMed  Google Scholar 

  127. Mora JR, Iwata M, Eksteen B et al (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:1157–1160

    Article  CAS  PubMed  Google Scholar 

  128. von Boehmer H (2007) Oral tolerance: is it all retinoic acid? J Exp Med 204:1737–1739

    Article  Google Scholar 

  129. Long KZ, Rosado JL, DuPont HL, Hertzmark E, Santos JI (2007) Supplementation with vitamin A reduces watery diarrhoea and respiratory infections in Mexican children. Br J Nutr 97:337–343

    Article  CAS  PubMed  Google Scholar 

  130. Duester G, Mic FA, Molotkov A (2003) Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid. Chem Biol Interact 143–144:201–210

    Article  PubMed  CAS  Google Scholar 

  131. Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, Butcher EC (2007) DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol 8:285–293

    Article  CAS  PubMed  Google Scholar 

  132. Bischoff SC (2008) “Vitamin hypothesis”: explanation for allergy increase? Blood 112:3535–3536

    Article  CAS  PubMed  Google Scholar 

  133. Bischoff SC (2008) Food allergy: Mechanisms and clinical manifestations. In: Pawankar R, Holgate S, Rosenwasser L (eds) Allergy Frontiers: Epigenetics to future perspectives. Springer, Tokyo 2009, p. 411–430

  134. Enrique E, Pineda F, Malek T et al (2005) Sublingual immunotherapy for hazelnut food allergy: a randomized, double-blind, placebo-controlled study with a standardized hazelnut extract. J Allergy Clin Immunol 116:1073–1079

    Article  CAS  PubMed  Google Scholar 

  135. Pajno GB (2007) Sublingual immunotherapy: the optimism and the issues. J Allergy Clin Immunol 119:796–801

    Article  PubMed  Google Scholar 

  136. Rolinck-Werninghaus C, Staden U, Mehl A, Hamelmann E, Beyer K, Niggemann B (2005) Specific oral tolerance induction with food in children: transient or persistent effect on food allergy? Allergy 60:1320–1322

    Article  CAS  PubMed  Google Scholar 

  137. Valenta R (2002) The future of antigen-specific immunotherapy of allergy. Nat Rev Immunol 2:446–453

    CAS  PubMed  Google Scholar 

  138. Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M (2007) Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370:1422–1431

    Article  CAS  PubMed  Google Scholar 

  139. Jensen BM, Metcalfe DD, Gilfillan AM (2007) Targeting kit activation: a potential therapeutic approach in the treatment of allergic inflammation. Inflamm Allergy Drug Targets 6:57–62

    Article  CAS  PubMed  Google Scholar 

  140. Kalliomaki M, Salminen S, Poussa T, Arvilommi H, Isolauri E (2003) Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361:1869–1871

    Article  PubMed  Google Scholar 

  141. Taylor AL, Dunstan JA, Prescott SL (2007) Probiotic supplementation for the first 6 months of life fails to reduce the risk of atopic dermatitis and increases the risk of allergen sensitization in high-risk children: a randomized controlled trial. J Allergy Clin Immunol 119:184–191

    Article  PubMed  Google Scholar 

  142. Brouwer ML, Wolt-Plompen SA, Dubois AE, van der Heide S, Jansen DF, Hoijer MA, Kauffman HF, Duiverman EJ (2006) No effects of probiotics on atopic dermatitis in infancy: a randomized placebo-controlled trial. Clin Exp Allergy 36:899–906

    Article  CAS  PubMed  Google Scholar 

  143. Folster-Holst R, Muller F, Schnopp N, Abeck D, Kreiselmaier I, Lenz T, von Ruden U, Schrezenmeir J, Christophers E, Weichenthal M (2006) Prospective, randomized controlled trial on Lactobacillus rhamnosus in infants with moderate to severe atopic dermatitis. Br J Dermatol 155:1256–1261

    Article  CAS  PubMed  Google Scholar 

  144. Wingren U, Hallert C, Norrby K, Enerbäck L (1986) Histamine and mucosal mast cells in gluten enteropathy. Agents Actions 18:266–268

    Article  CAS  PubMed  Google Scholar 

  145. Lähteenoja H, Mäki M, Viander M, Toivanen A, Syrjänen S (2000) Local challenge of oral mucosa with gliadin in patients with coeliac disease. Clin Exp Immunol 120:38–45

    Article  PubMed  Google Scholar 

  146. Locher C, Tipold A, Welle M, Busato A, Zurbriggen A, Griot-Wenk ME (2001) Quantitative assessment of mast cells and expression of IgE protein and mRNA for IgE and interleukin 4 in the gastrointestinal tract of healthy dogs and dogs with inflammatory bowel disease. Am J Vet Res 62:211–216

    Article  CAS  PubMed  Google Scholar 

  147. He SH (2004) Key role of mast cells and their major secretory products in inflammatory bowel disease. World J Gastroenterol 10:309–318

    CAS  PubMed  Google Scholar 

  148. Stoyanova II, Gulubova MV (2002) Mast cells and inflammatory mediators in chronic ulcerative colitis. Acta Histochem 104:185–192

    Article  CAS  PubMed  Google Scholar 

  149. Farhadi A, Keshavarzian A, Fields JZ, Jakate S, Shaikh M, Banan A (2007) Reduced immunostaining for c-kit receptors in mucosal mast cells in inflammatory bowel disease. J Gastroenterol Hepatol 22:2338–2343

    Article  PubMed  Google Scholar 

  150. De Giorgio R, Barbara G (2008) Is irritable bowel syndrome an inflammatory disorder? Curr Gastroenterol Rep 10:385–390

    Article  PubMed  Google Scholar 

  151. Jakate S, Demeo M, John R, Tobin M, Keshavarzian A (2006) Mastocytic enterocolitis: increased mucosal mast cells in chronic intractable diarrhea. Arch Pathol Lab Med 130:362–367

    PubMed  Google Scholar 

  152. Walker MM, Talley NJ, Prabhakar M, Pennaneac'h CJ, Aro P, Ronkainen J, Storskrubb T, Harmsen WS, Zinsmeister AR, Agreus L (2009) Duodenal mastocytosis, eosinophilia and intraepithelial lymphocytosis as possible disease markers in the irritable bowel syndrome and functional dyspepsia. Aliment Pharmacol Ther 29:765–773

    Article  CAS  PubMed  Google Scholar 

  153. Gasbarrini A, Lauritano EC, Garcovich M, Sparano L, Gasbarrini G (2008) New insights into the pathophysiology of IBS: intestinal microflora, gas production and gut motility. Eur Rev Med Pharmacol Sci 12(Suppl 1):111–117

    PubMed  Google Scholar 

  154. Cherner JA, Jensen RT, Dubois A, O’Dorisio TM, Gardner JD, Metcalfe DD (1998) Gastrointestinal dysfunction in systemic mastocytosis. A prospective study. Gastroenterology 95:657–667

    Google Scholar 

  155. Jensen RT (2000) Gastrointestinal abnormalities and involvement in systemic mastocytosis. Hematol Oncol Clin North Am 14:579–623

    Article  CAS  PubMed  Google Scholar 

  156. Siegert SI, Diebold J, Ludolph-Hauser D, Löhrs U (2004) Are gastrointestinal mucosal mast cells increased in patients with systemic mastocytosis? Am J Clin Pathol 122:560–565

    Article  PubMed  Google Scholar 

  157. Hahn HP, Hornick JL (2007) Immunoreactivity for CD25 in gastrointestinal mucosal mast cells is specific for systemic mastocytosis. Am J Surg Pathol 31:1669–1676

    Article  PubMed  Google Scholar 

  158. Horny HP, Sotlar K, Valent P (2007) Mastocytosis: state of the art. Pathobiology 74:121–132

    Article  CAS  PubMed  Google Scholar 

  159. Valent P, Akin C, Escribano L et al (2007) Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Invest 37:435–453

    Article  CAS  PubMed  Google Scholar 

  160. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  PubMed  Google Scholar 

  161. Wedemeyer J, Galli SJ (2005) Decreased susceptibility of mast cell-deficient Kit(W)/Kit(W-v) mice to the development of 1, 2-dimethylhydrazine-induced intestinal tumors. Lab Invest 85:388–396

    Article  CAS  PubMed  Google Scholar 

  162. Takanami I, Takeuchi K, Naruke M (2000) Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 88:2686–2692

    Article  CAS  PubMed  Google Scholar 

  163. Ribatti D, Crivellato E, Roccaro AM, Ria R, Vacca A (2004) Mast cell contribution to angiogenesis related to tumour progression. Clin Exp Allergy 34:1660–1664

    Article  CAS  PubMed  Google Scholar 

  164. Lee DM, Friend DS, Gurish MF, Benoist C, Mathis D, Brenner MB (2002) Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297:1689–1692

    Article  CAS  PubMed  Google Scholar 

  165. Woolley DE (2003) The mast cell in inflammatory arthritis. N Engl J Med 348:1709–1711

    Article  CAS  PubMed  Google Scholar 

  166. Nigrovic PA, Lee DM (2005) Mast cells in inflammatory arthritis. Arthritis Res Ther 7:1–11

    Article  CAS  PubMed  Google Scholar 

  167. Juurikivi A, Sandler C, Lindstedt KA, Kovanen PT, Juutilainen T, Leskinen MJ, Maki T, Eklund KK (2005) Inhibition of c-kit tyrosine kinase by imatinib mesylate induces apoptosis in mast cells in rheumatoid synovia: a potential approach to the treatment of arthritis. Ann Rheum Dis 64:1126–1131

    Article  CAS  PubMed  Google Scholar 

  168. Valent P, Baghestanian M, Bankl HC, Sillaber C, Sperr WR, Wojta J, Binder BR, Lechner K (2002) New aspects in thrombosis research: possible role of mast cells as profibrinolytic and antithrombotic cells. Thromb Haemost 87:786–790

    CAS  PubMed  Google Scholar 

  169. Lindstedt KA, Kovanen PT (2004) Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr Opin Lipidol 15:567–573

    Article  CAS  PubMed  Google Scholar 

  170. Liao Y, Husain A (1995) The chymase-angiotensin system in humans: biochemistry, molecular biology and potential role in cardiovascular diseases. Can J Cardiol 11(Suppl F):13F–19F

    CAS  PubMed  Google Scholar 

  171. Silver RB, Reid AC, Mackins CJ, Askwith T, Schaefer U, Herzlinger D, Levi R (2004) Mast cells: a unique source of renin. Proc Natl Acad Sci U S A 101:13607–13612

    Article  CAS  PubMed  Google Scholar 

  172. Fildes JE, Walker AH, Keevil B, Hutchinson IV, Leonard CT, Yonan N (2005) The effects of ACE inhibition on serum angiotensin II concentration following cardiac transplantation. Transplant Proc 37:4525–4527

    Article  CAS  PubMed  Google Scholar 

  173. Garfield RE, Irani AM, Schwartz LB, Bytautiene E, Romero R (2006) Structural and functional comparison of mast cells in the pregnant versus nonpregnant human uterus. Am J Obstet Gynecol 194:261–267

    Article  CAS  PubMed  Google Scholar 

  174. Zappulla JP, Arock M, Mars LT, Liblau RS (2002) Mast cells: new targets for multiple sclerosis therapy? J Neuroimmunol 131:5–20

    Article  CAS  PubMed  Google Scholar 

  175. Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A (2005) The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev 49:65–76

    Article  CAS  PubMed  Google Scholar 

  176. Asarian L, Yousefzadeh E, Silverman AJ, Silver R (2002) Stimuli from conspecifics influence brain mast cell population in male rats. Horm Behav 42:1–12

    Article  CAS  PubMed  Google Scholar 

  177. Edwards AM (1995) Oral sodium cromoglycate: its use in the management of food allergy. Clin Exp Allergy 25(Suppl 1):31–33

    Article  PubMed  Google Scholar 

  178. Berlin AA, Lukacs NW (2005) Treatment of cockroach allergen asthma model with imatinib attenuates airway responses. Am J Respir Crit Care Med 171:35–39

    Article  PubMed  Google Scholar 

  179. Dietz AB, Souan L, Knutson GJ, Bulur PA, Litzow MR, Vuk-Pavlovic S (2004) Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 104:1094–1099

    Article  CAS  PubMed  Google Scholar 

  180. Cairns JA (2005) Inhibitors of mast cell tryptase beta as therapeutics for the treatment of asthma and inflammatory disorders. Pulm Pharmacol Ther 18:55–66

    Article  CAS  PubMed  Google Scholar 

  181. Ishida S, Kinoshita T, Sugawara N, Yamashita T, Koike K (2003) Serum inhibitors for human mast cell growth: possible role of retinol. Allergy 58:1044–1052

    Article  CAS  PubMed  Google Scholar 

  182. Theoharides TC, Bielory L (2004) Mast cells and mast cell mediators as targets of dietary supplements. Ann Allergy Asthma Immunol 93:S24–S34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan C. Bischoff.

Additional information

Contribution to the Special Issue of Seminars in Immunopathology (SIM) “The GIT immune system”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bischoff, S.C. Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 31, 185–205 (2009). https://doi.org/10.1007/s00281-009-0165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0165-4

Keywords

Navigation