Skip to main content

Advertisement

Log in

Emerging Opportunities for Site-Specific Molecular and Cellular Interventions in Autoimmune Hepatitis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Current corticosteroid-based treatments of autoimmune hepatitis frequently have incomplete or unsatisfactory outcomes, side effects, and excessive immune suppression. The goal of this review is to describe the advances in developing animal models of autoimmune hepatitis and in treating diverse immune-mediated diseases that make pursuit of site-specific molecular and cellular inventions in autoimmune hepatitis feasible. Prime source and review articles in English were selected by a Medline search through October 2009. A murine model infected with an adenovirus expressing human CYP2D6 is a resource for evaluating new therapies because of its histological and serological features, persistence, and progressive hepatic fibrosis. Synthetic analog peptides that block autoantigen expression, a dimeric recombinant human fusion protein of cytotoxic T lymphocyte antigen-4, monoclonal antibodies against tumor necrosis factor-alpha, recombinant interleukin 10, tolerization techniques for disease-triggering autoantigens, T regulatory cell transfer, vaccination against antigen-specific cytotoxic CD8+ T cells, and gene silencing methods using small inhibitory RNAs are feasible interventions to explore. Treatments directed at dampening immunocyte activation with soluble cytotoxic T lymphocyte antigen-4, inhibiting immunocyte differentiation with recombinant interleukin 10, and improving immunosuppressive activity with regulatory T cell modulation have the most immediate promise. Progress in the development of an animal model of autoimmune hepatitis and experiences in other immune-mediated diseases justify the evaluation of site-specific molecular and cellular interventions in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cook GC, Mulligan R, Sherlock S. Controlled prospective trial of corticosteroid therapy in active chronic hepatitis. Q J Med. 1971;40:159–185.

    CAS  PubMed  Google Scholar 

  2. Soloway RD, Summerskill WH, Baggenstoss AH, et al. Clinical, biochemical, and histological remission of severe chronic active liver disease: a controlled study of treatments and early prognosis. Gastroenterology. 1972;63:820–833.

    CAS  PubMed  Google Scholar 

  3. Murray-Lyon IM, Stern RB, Williams R. Controlled trial of prednisone and azathioprine in active chronic hepatitis. Lancet. 1973;1:735–737.

    Article  CAS  PubMed  Google Scholar 

  4. Summerskill WH, Korman MG, Ammon HV, Baggenstoss AH. Prednisone for chronic active liver disease: dose titration, standard dose, and combination with azathioprine compared. Gut. 1975;16:876–883.

    Article  CAS  PubMed  Google Scholar 

  5. Kirk AP, Jain S, Pocock S, Thomas HC, Sherlock S. Late results of the Royal Free Hospital prospective controlled trial of prednisolone therapy in hepatitis B surface antigen negative chronic active hepatitis. Gut. 1980;21:78–83.

    Article  CAS  PubMed  Google Scholar 

  6. Roberts SK, Therneau TM, Czaja AJ. Prognosis of histological cirrhosis in type 1 autoimmune hepatitis. Gastroenterology. 1996;110:848–857.

    Article  CAS  PubMed  Google Scholar 

  7. Floreani A, Niro G, Rosa Rizzotto E, et al. Type I autoimmune hepatitis: clinical course and outcome in an Italian multicentre study. Aliment Pharmacol Ther. 2006;24:1051–1057.

    Article  CAS  PubMed  Google Scholar 

  8. Seo S, Toutounjian R, Conrad A, Blatt L, Tong MJ. Favorable outcomes of autoimmune hepatitis in a community clinic setting. J Gastroenterol Hepatol. 2008;23:1410–1414.

    Article  PubMed  Google Scholar 

  9. Schvarcz R, Glaumann H, Weiland O. Survival and histological resolution of fibrosis in patients with autoimmune chronic active hepatitis. J Hepatol. 1993;18:15–23.

    Article  CAS  PubMed  Google Scholar 

  10. Dufour JF, DeLellis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med. 1997;127:981–985.

    CAS  PubMed  Google Scholar 

  11. Cotler SJ, Jakate S, Jensen DM. Resolution of cirrhosis in autoimmune hepatitis with corticosteroid therapy. J Clin Gastroenterol. 2001;32:428–430.

    Article  CAS  PubMed  Google Scholar 

  12. Czaja AJ, Carpenter HA. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J Hepatol. 2004;40:646–652.

    Article  CAS  PubMed  Google Scholar 

  13. Mohamadnejad M, Malekzadeh R, Nasseri-Moghaddam S, et al. Impact of immunosuppressive treatment on liver fibrosis in autoimmune hepatitis. Dig Dis Sci. 2005;50:547–551.

    Article  CAS  PubMed  Google Scholar 

  14. Czaja AJ, Wolf AM, Summerskill WH. Development and early prognosis of esophageal varices in severe chronic active liver disease (CALD) treated with prednisone. Gastroenterology. 1979;77:629–633.

    CAS  PubMed  Google Scholar 

  15. Czaja AJ. Rapidity of treatment response and outcome in type 1 autoimmune hepatitis. J Hepatol. 2009;51:161–167.

    Article  CAS  PubMed  Google Scholar 

  16. Czaja AJ, Freese DK. Practice guidelines of the American Association for the Study of Liver Diseases. Diagnosis and treatment of autoimmune hepatitis. Hepatology. 2002;36:479–497.

    Article  PubMed  Google Scholar 

  17. Czaja AJ. Current and future treatments of autoimmune hepatitis. Expert Rev Gastroenterol Hepatol. 2009;3:269–291.

    Article  CAS  PubMed  Google Scholar 

  18. Czaja AJ, Beaver SJ, Shiels MT. Sustained remission after corticosteroid therapy of severe hepatitis B surface antigen-negative chronic active hepatitis. Gastroenterology. 1987;92:215–219.

    CAS  PubMed  Google Scholar 

  19. Czaja AJ. Safety issues in the management of autoimmune hepatitis. Expert Opin Drug Saf. 2008;7:319–333.

    Article  CAS  PubMed  Google Scholar 

  20. Montano-Loza AJ, Carpenter HA, Czaja AJ. Features associated with treatment failure in type 1 autoimmune hepatitis and predictive value of the model of end-stage liver disease. Hepatology. 2007;46:1138–1145.

    Article  CAS  PubMed  Google Scholar 

  21. Czaja AJ, Davis GL, Ludwig J, Taswell HF. Complete resolution of inflammatory activity following corticosteroid treatment of HBsAg-negative chronic active hepatitis. Hepatology. 1984;4:622–627.

    Article  CAS  PubMed  Google Scholar 

  22. Czaja AJ, Ammon HV, Summerskill WH. Clinical features and prognosis of severe chronic active liver disease (CALD) after corticosteroid-induced remission. Gastroenterology. 1980;78:518–523.

    CAS  PubMed  Google Scholar 

  23. Czaja AJ, Ludwig J, Baggenstoss AH, Wolf A. Corticosteroid-treated chronic active hepatitis in remission: uncertain prognosis of chronic persistent hepatitis. N Engl J Med. 1981;304:5–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hegarty JE, Nouri Aria KT, Portmann B, Eddleston AL, Williams R. Relapse following treatment withdrawal in patients with autoimmune chronic active hepatitis. Hepatology. 1983;3:685–689.

    Article  CAS  PubMed  Google Scholar 

  25. Czaja AJ, Menon KV, Carpenter HA. Sustained remission after corticosteroid therapy for type 1 autoimmune hepatitis: a retrospective analysis. Hepatology. 2002;35:890–897.

    Article  CAS  PubMed  Google Scholar 

  26. Czaja AJ, Carpenter HA. Histological features associated with relapse after corticosteroid withdrawal in type 1 autoimmune hepatitis. Liver Int. 2003;23:116–123.

    Article  PubMed  Google Scholar 

  27. Manns MP, Vogel A. Autoimmune hepatitis, from mechanisms to therapy. Hepatology. 2006;43:S132–S144.

    Article  CAS  PubMed  Google Scholar 

  28. Czaja AJ. Autoimmune hepatitis. Part A: pathogenesis. Expert Rev Gastroenterol Hepatol. 2007;1:113–128.

    Article  CAS  PubMed  Google Scholar 

  29. Vergani D, Mieli-Vergani G. Aetiopathogenesis of autoimmune hepatitis. World J Gastroenterol. 2008;14:3306–3312.

    Article  CAS  PubMed  Google Scholar 

  30. Vierling JM, Flores PA. Evolving new therapies of autoimmune hepatitis. Clin Liver Dis. 2002;6:825–850. ix.

    Article  PubMed  Google Scholar 

  31. Schalm SW, Summerskill WH, Go VL. Prednisone for chronic active liver disease: pharmacokinetics, including conversion to prednisolone. Gastroenterology. 1977;72:910–913.

    CAS  PubMed  Google Scholar 

  32. Uribe M, Summerskill WH, Go VL. Comparative serum prednisone and prednisolone concentrations following administration to patients with chronic active liver disease. Clin Pharmacokinet. 1982;7:452–459.

    Article  CAS  PubMed  Google Scholar 

  33. Uribe M, Go VL, Kluge D. Prednisone for chronic active hepatitis: pharmacokinetics and serum binding in patients with chronic active hepatitis and steroid major side effects. J Clin Gastroenterol. 1984;6:331–335.

    CAS  PubMed  Google Scholar 

  34. Brattsand R, Linden M. Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies. Aliment Pharmacol Ther. 1996;10(Suppl 2):81–90. discussion 91-82.

    CAS  PubMed  Google Scholar 

  35. De Bosscher K, Vanden Berghe W, Haegeman G. Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. J Neuroimmunol. 2000;109:16–22.

    Article  PubMed  Google Scholar 

  36. Almawi WY. Molecular mechanisms of glucocorticoid effects. Mod Asp Immunobiol. 2001;2:78–82.

    Google Scholar 

  37. Chan GL, Erdmann GR, Gruber SA, Matas AJ, Canafax DM. Azathioprine metabolism: pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J Clin Pharmacol. 1990;30:358–363.

    CAS  PubMed  Google Scholar 

  38. Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol. 1992;43:329–339.

    Article  CAS  PubMed  Google Scholar 

  39. Sandborn WJ. A review of immune modifier therapy for inflammatory bowel disease: azathioprine, 6-mercaptopurine, cyclosporine, and methotrexate. Am J Gastroenterol. 1996;91:423–433.

    CAS  PubMed  Google Scholar 

  40. Weinshilboum R. Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase. Drug Metab Dispos. 2001;29:601–605.

    CAS  PubMed  Google Scholar 

  41. Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111:1133–1145.

    CAS  PubMed  Google Scholar 

  42. Atreya I, Neurath MF. Azathioprine in inflammatory bowel disease: improved molecular insights and resulting clinical implications. Expert Rev Gastroenterol Hepatol. 2008;2:23–34.

    Article  CAS  PubMed  Google Scholar 

  43. Thomas CW, Myhre GM, Tschumper R, et al. Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. J Pharmacol Exp Ther. 2005;312:537–545.

    Article  CAS  PubMed  Google Scholar 

  44. Heneghan MA, McFarlane IG. Current and novel immunosuppressive therapy for autoimmune hepatitis. Hepatology. 2002;35:7–13.

    Article  CAS  PubMed  Google Scholar 

  45. Wolfraim LA. Treating autoimmune diseases through restoration of antigen-specific immune tolerance. Arch Immunol Ther Exp (Warsz). 2006;54:1–13.

    Article  CAS  Google Scholar 

  46. Myers LK, Rosloniec EF, Seyer JM, Stuart JM, Kang AH. A synthetic peptide analogue of a determinant of type II collagen prevents the onset of collagen-induced arthritis. J Immunol. 1993;150:4652–4658.

    CAS  PubMed  Google Scholar 

  47. Fridkis-Hareli M, Rosloniec EF, Fugger L, Strominger JL. Synthetic amino acid copolymers that bind to HLA-DR proteins and inhibit type II collagen-reactive T cell clones. Proc Natl Acad Sci U S A. 1998;95:12528–12531.

    Article  CAS  PubMed  Google Scholar 

  48. Myers LK, Tang B, Rosloniec EF, et al. Characterization of a peptide analog of a determinant of type II collagen that suppresses collagen-induced arthritis. J Immunol. 1998;161:3589–3595.

    CAS  PubMed  Google Scholar 

  49. Hanson GJ. DR (MHC class II) ligands: an approach to rheumatoid arthritis therapeutics. Curr Pharm Des. 1998;4:397–402.

    CAS  PubMed  Google Scholar 

  50. Fridkis-Hareli M, Rosloniec EF, Fugger L, Strominger JL. Synthetic peptides that inhibit binding of the collagen type II 261–273 epitope to rheumatoid arthritis-associated HLA-DR1 and -DR4 molecules and collagen-specific T-cell responses. Hum Immunol. 2000;61:640–650.

    Article  CAS  PubMed  Google Scholar 

  51. Guinan EC, Boussiotis VA, Neuberg D, et al. Transplantation of anergic histoincompatible bone marrow allografts. N Engl J Med. 1999;340:1704–1714.

    Article  CAS  PubMed  Google Scholar 

  52. Fiocco U, Sfriso P, Oliviero F, et al. Co-stimulatory modulation in rheumatoid arthritis: the role of (CTLA4-Ig) abatacept. Autoimmun Rev. 2008;8:76–82.

    Article  CAS  PubMed  Google Scholar 

  53. Korhonen R, Moilanen E. Abatacept, a novel CD80/86-CD28 T cell co-stimulation modulator, in the treatment of rheumatoid arthritis. Basic Clin Pharmacol Toxicol. 2009;104:276–284.

    Article  CAS  PubMed  Google Scholar 

  54. Maxwell L, Singh JA. Abatacept for rheumatoid arthritis. Cochrane Database Syst Rev. 2009;CD007277.

  55. Bach MA, Bach JF. The use of monoclonal anti-T cell antibodies to study T cell imbalances in human diseases. Clin Exp Immunol. 1981;45:449–456.

    CAS  PubMed  Google Scholar 

  56. Rutgeerts P, D’Haens G, Targan S, et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology. 1999;117:761–769.

    Article  CAS  PubMed  Google Scholar 

  57. Naveau S, Chollet-Martin S, Dharancy S, et al. A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis. Hepatology. 2004;39:1390–1397.

    Article  CAS  PubMed  Google Scholar 

  58. Schreiber S, Fedorak RN, Nielsen OH, et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn’s disease. Crohn’s Disease IL-10 Cooperative Study Group. Gastroenterology. 2000;119:1461–1472.

    Article  CAS  PubMed  Google Scholar 

  59. Nelson DR, Lauwers GY, Lau JY, Davis GL. Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C: a pilot trial of interferon nonresponders. Gastroenterology. 2000;118:655–660.

    Article  CAS  PubMed  Google Scholar 

  60. Santos ES, Arosemena LR, Raez LE, O’Brien C, Regev A. Successful treatment of autoimmune hepatitis and idiopathic thrombocytopenic purpura with the monoclonal antibody, rituximab: case report and review of literature. Liver Int. 2006;26:625–629.

    Article  CAS  PubMed  Google Scholar 

  61. Lohse AW, Dienes HP, Meyer zum Buschenfelde KH. Suppression of murine experimental autoimmune hepatitis by T-cell vaccination or immunosuppression. Hepatology. 1998;27:1536–1543.

    Article  CAS  PubMed  Google Scholar 

  62. Guan Q, Ma Y, Hillman CL, et al. Development of recombinant vaccines against IL-12/IL-23 p40 and in vivo evaluation of their effects in the downregulation of intestinal inflammation in murine colitis. Vaccine. 2009.

  63. Wardrop RM III, Whitacre CC. Oral tolerance in the treatment of inflammatory autoimmune diseases. Inflamm Res. 1999;48:106–119.

    Article  CAS  PubMed  Google Scholar 

  64. Nagler A, Pines M, Abadi U, et al. Oral tolerization ameliorates liver disorders associated with chronic graft versus host disease in mice. Hepatology. 2000;31:641–648.

    Article  CAS  PubMed  Google Scholar 

  65. McCafferty AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol. 2003;21:639–644.

    Article  Google Scholar 

  66. Hannon GJ. RNA interference. Nature. 2002;418:244–251.

    Article  CAS  PubMed  Google Scholar 

  67. Davidson BL. Hepatic diseases–hitting the target with inhibitory RNAs. N Engl J Med. 2003;349:2357–2359.

    Article  CAS  PubMed  Google Scholar 

  68. Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature. 2004;431:371–378.

    Article  CAS  PubMed  Google Scholar 

  69. Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003;9:347–351.

    Article  CAS  PubMed  Google Scholar 

  70. Howell CD. Animal models of autoimmunity. Clin Liver Dis. 2002;6:775–783.

    Article  PubMed  Google Scholar 

  71. Christen U, Holdener M, Hintermann E. Animal models for autoimmune hepatitis. Autoimmun Rev. 2007;6:306–311.

    Article  CAS  PubMed  Google Scholar 

  72. Jaeckel E. Animal models of autoimmune hepatitis. Semin Liver Dis. 2002;22:325–338.

    Article  PubMed  Google Scholar 

  73. Peters MG. Animal models of autoimmune liver disease. Immunol Cell Biol. 2002;80:113–116.

    Article  PubMed  Google Scholar 

  74. Alvarez F, Bernard O, Homberg JC, Kreibich G. Anti-liver-kidney microsome antibody recognizes a 50, 000 molecular weight protein of the endoplasmic reticulum. J Exp Med. 1985;161:1231–1236.

    Article  CAS  PubMed  Google Scholar 

  75. Gueguen M, Meunier-Rotival M, Bernard O, Alvarez F. Anti-liver kidney microsome antibody recognizes a cytochrome P450 from the IID subfamily. J Exp Med. 1988;168:801–806.

    Article  CAS  PubMed  Google Scholar 

  76. Manns MP, Johnson EF, Griffin KJ, Tan EM, Sullivan KF. Major antigen of liver kidney microsomal autoantibodies in idiopathic autoimmune hepatitis is cytochrome P450db1. J Clin Invest. 1989;83:1066–1072.

    Article  CAS  PubMed  Google Scholar 

  77. Obermayer-Straub P, Manns MP. Cytochrome P450 enzymes and UDP-glucuronosyltransferases as hepatocellular autoantigens. Mol Biol Rep. 1996;23:235–242.

    Article  CAS  PubMed  Google Scholar 

  78. Dalekos GN, Zachou K, Liaskos C, Gatselis N. Autoantibodies and defined target autoantigens in autoimmune hepatitis: an overview. Eur J Intern Med. 2002;13:293–303.

    Article  CAS  PubMed  Google Scholar 

  79. Bianchi FB, Muratori P, Muratori L. New autoantibodies and autoantigens in autoimmune hepatitis. Clin Liver Dis. 2002;6:785–797.

    Article  PubMed  Google Scholar 

  80. Strassburg CP, Manns MP. Autoantibodies and autoantigens in autoimmune hepatitis. Semin Liver Dis. 2002;22:339–352.

    Article  CAS  PubMed  Google Scholar 

  81. Bogdanos DP, Dalekos GN. Enzymes as target antigens of liver-specific autoimmunity: the case of cytochromes P450s. Curr Med Chem. 2008;15:2285–2292.

    Article  CAS  PubMed  Google Scholar 

  82. Tahiri F, Le Naour F, Huguet S, et al. Identification of plasma membrane autoantigens in autoimmune hepatitis type 1 using a proteomics tool. Hepatology. 2008;47:937–948.

    Article  CAS  PubMed  Google Scholar 

  83. Song Q, Liu G, Hu S, et al. Novel autoimmune hepatitis-specific autoantigens identified using protein microarray technology. J Proteome Res. 2009.

  84. Djilali-Saiah I, Lapierre P, Vittozi S, Alvarez F. DNA vaccination breaks tolerance for a neo-self antigen in liver: a transgenic murine model of autoimmune hepatitis. J Immunol. 2002;169:4889–4896.

    PubMed  Google Scholar 

  85. Lapierre P, Djilali-Saiah I, Vitozzi S, Alvarez F. A murine model of type 2 autoimmune hepatitis: Xenoimmunization with human antigens. Hepatology. 2004;39:1066–1074.

    Article  CAS  PubMed  Google Scholar 

  86. Lapierre P, Beland K, Djilali-Saiah I, Alvarez F. Type 2 autoimmune hepatitis murine model: the influence of genetic background in disease development. J Autoimmun. 2006;26:82–89.

    Article  CAS  PubMed  Google Scholar 

  87. Holdener M, Hintermann E, Bayer M, et al. Breaking tolerance to the natural human liver autoantigen cytochrome P450 2D6 by virus infection. J Exp Med. 2008;205:1409–1422.

    Article  CAS  PubMed  Google Scholar 

  88. Czaja AJ, Donaldson PT. Genetic susceptibilities for immune expression and liver cell injury in autoimmune hepatitis. Immunol Rev. 2000;174:250–259.

    Article  CAS  PubMed  Google Scholar 

  89. Czaja AJ, Doherty DG, Donaldson PT. Genetic bases of autoimmune hepatitis. Dig Dis Sci. 2002;47:2139–2150.

    Article  CAS  PubMed  Google Scholar 

  90. Brown JH, Jardetzky T, Saper MA, et al. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature. 1988;332:845–850.

    Article  CAS  PubMed  Google Scholar 

  91. Doherty DG, Penzotti JE, Koelle DM, et al. Structural basis of specificity and degeneracy of T cell recognition: pluriallelic restriction of T cell responses to a peptide antigen involves both specific and promiscuous interactions between the T cell receptor, peptide, and HLA-DR. J Immunol. 1998;161:3527–3535.

    CAS  PubMed  Google Scholar 

  92. Corper AL, Stratmann T, Apostolopoulos V, et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science. 2000;288:505–511.

    Article  CAS  PubMed  Google Scholar 

  93. Penzotti JE, Doherty D, Lybrand TP, Nepom GT. A structural model for TCR recognition of the HLA class II shared epitope sequence implicated in susceptibility to rheumatoid arthritis. J Autoimmun. 1996;9:287–293.

    Article  CAS  PubMed  Google Scholar 

  94. Garboczi DN, Ghosh P, Utz U, et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature. 1996;384:134–141.

    Article  CAS  PubMed  Google Scholar 

  95. Friede T, Gnau V, Jung G, et al. Natural ligand motifs of closely related HLA-DR4 molecules predict features of rheumatoid arthritis associated peptides. Biochim Biophys Acta. 1996;1316:85–101.

    PubMed  Google Scholar 

  96. Volz T, Schwarz G, Fleckenstein B, et al. Determination of the peptide binding motif and high-affinity ligands for HLA-DQ4 using synthetic peptide libraries. Hum Immunol. 2004;65:594–601.

    Article  CAS  PubMed  Google Scholar 

  97. Weyand CM, Hicok KC, Goronzy JJ. Nonrandom selection of T cell specificities in anti-HLA-DR responses. Sequence motifs of the responder HLA-DR allele influence T cell recruitment. J Immunol. 1991;147:70–78.

    CAS  PubMed  Google Scholar 

  98. Strettell MD, Donaldson PT, Thomson LJ, et al. Allelic basis for HLA-encoded susceptibility to type 1 autoimmune hepatitis. Gastroenterology. 1997;112:2028–2035.

    Article  CAS  PubMed  Google Scholar 

  99. Doherty DG, Donaldson PT, Underhill JA, et al. Allelic sequence variation in the HLA class II genes and proteins in patients with autoimmune hepatitis. Hepatology. 1994;19:609–615.

    Article  CAS  PubMed  Google Scholar 

  100. Sakurai Y, Brand DD, Tang B, et al. Analog peptides of type II collagen can suppress arthritis in HLA-DR4 (DRB1*0401) transgenic mice. Arthritis Res Ther. 2006;8:R150.

    Article  PubMed  CAS  Google Scholar 

  101. Myers LK, Tang B, Rosioniec EF, Stuart JM, Kang AH. An altered peptide ligand of type II collagen suppresses autoimmune arthritis. Crit Rev Immunol. 2007;27:345–356.

    CAS  PubMed  Google Scholar 

  102. Myers LK, Sakurai Y, Tang B, et al. Peptide-induced suppression of collagen-induced arthritis in HLA-DR1 transgenic mice. Arthritis Rheum. 2002;46:3369–3377.

    Article  CAS  PubMed  Google Scholar 

  103. Czaja AJ. Genetic factors affecting the occurrence, clinical phenotype, and outcome of autoimmune hepatitis. Clin Gastroenterol Hepatol. 2008;6:379–388.

    Article  CAS  PubMed  Google Scholar 

  104. Chambers CA, Allison JP. Co-stimulation in T cell responses. Curr Opin Immunol. 1997;9:396–404.

    Article  CAS  PubMed  Google Scholar 

  105. Chambers CA. The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol. 2001;22:217–223.

    Article  CAS  PubMed  Google Scholar 

  106. Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7–2 complex. Nature. 2001;410:604–608.

    Article  CAS  PubMed  Google Scholar 

  107. Viglietta V, Khoury SJ. Modulating co-stimulation. Neurotherapeutics. 2007;4:666–675.

    Article  CAS  PubMed  Google Scholar 

  108. Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation. Immunol Rev. 2009;229:307–321.

    Article  CAS  PubMed  Google Scholar 

  109. Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 1992;71:1065–1068.

    Article  CAS  PubMed  Google Scholar 

  110. Schwartz RS. The new immunology–the end of immunosuppressive drug therapy? N Engl J Med. 1999;340:1754–1756.

    Article  CAS  PubMed  Google Scholar 

  111. Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev. 2008;223:143–155.

    Article  CAS  PubMed  Google Scholar 

  112. Weyand CM, Goronzy JJ. T-cell-targeted therapies in rheumatoid arthritis. Nat Clin Pract Rheumatol. 2006;2:201–210.

    Article  CAS  PubMed  Google Scholar 

  113. Ben-Shoshan M. CTLA-4Ig: uses and future directions. Recent Pat Inflamm Allergy Drug Discov. 2009;3:132–142.

    Article  CAS  PubMed  Google Scholar 

  114. Kuemmerle-Deschner JB, Benseler S. Abatacept in difficult-to-treat juvenile idiopathic arthritis. Biologics. 2008;2:865–874.

    CAS  PubMed  Google Scholar 

  115. Viglietta V, Bourcier K, Buckle GJ, et al. CTLA4Ig treatment in patients with multiple sclerosis: an open-label, phase 1 clinical trial. Neurology. 2008;71:917–924.

    Article  CAS  PubMed  Google Scholar 

  116. de Jong YP, Rietdijk ST, Faubion WA, et al. Blocking inducible co-stimulator in the absence of CD28 impairs Th1 and CD25+ regulatory T cells in murine colitis. Int Immunol. 2004;16:205–213.

    Article  PubMed  Google Scholar 

  117. Langer LF, Clay TM, Morse MA. Update on anti-CTLA-4 antibodies in clinical trials. Expert Opin Biol Ther. 2007;7:1245–1256.

    Article  CAS  PubMed  Google Scholar 

  118. Kallinich T, Beier KC, Gelfand EW, Kroczek RA, Hamelmann E. Co-stimulatory molecules as potential targets for therapeutic intervention in allergic airway disease. Clin Exp Allergy. 2005;35:1521–1534.

    Article  CAS  PubMed  Google Scholar 

  119. Vermeiren J, Ceuppens JL, Haegel-Kronenberger H, et al. Blocking B7 and CD40 co-stimulatory molecules decreases antiviral T cell activity. Clin Exp Immunol. 2004;135:253–258.

    Article  CAS  PubMed  Google Scholar 

  120. Pham T, Claudepierre P, Constantin A, et al. Abatacept therapy and safety management. Joint Bone Spine. 2009;76(Suppl 1):S3–S55.

    Article  PubMed  Google Scholar 

  121. Liblau RS, Singer SM, McDevitt HO. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995;16:34–38.

    Article  CAS  PubMed  Google Scholar 

  122. Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev. 1996;9:532–562.

    CAS  PubMed  Google Scholar 

  123. Czaja AJ. Understanding the pathogenesis of autoimmune hepatitis. Am J Gastroenterol. 2001;96:1224–1231.

    Article  CAS  PubMed  Google Scholar 

  124. Hopf U, Meyer zum Buschenfelde KH, Arnold W. Detection of a liver-membrane autoantibody in HBsAg-negative chronic active hepatitis. N Engl J Med. 1976;294:578–582.

    Article  CAS  PubMed  Google Scholar 

  125. Gonzales C, Cochrane AM, Eddleston AL, Williams R. Mechanisms responsible for antibody-dependent, cell-mediated cytotoxicity to isolated hepatocytes in chronic active hepatitis. Gut. 1979;20:385–388.

    Article  CAS  PubMed  Google Scholar 

  126. Nouri-Aria KT, Hegarty JE, Alexander GJ, Eddleston AL, Williams R. IgG production in ‘autoimmune’ chronic active hepatitis. Effect of prednisolone on T and B lymphocyte function. Clin Exp Immunol. 1985;61:290–296.

    CAS  PubMed  Google Scholar 

  127. Vergani D, Mieli-Vergani G, Mondelli M, Portmann B, Eddleston AL. Immunoglobulin on the surface of isolated hepatocytes is associated with antibody-dependent cell-mediated cytotoxicity and liver damage. Liver. 1987;7:307–315.

    CAS  PubMed  Google Scholar 

  128. Czaja AJ. Autoimmune hepatitis. Evolving concepts and treatment strategies. Dig Dis Sci. 1995;40:435–456.

    Article  CAS  PubMed  Google Scholar 

  129. McFarlane IG. Pathogenesis of autoimmune hepatitis. Biomed Pharmacother. 1999;53:255–263.

    Article  CAS  PubMed  Google Scholar 

  130. Czaja AJ, Sievers C, Zein NN. Nature and behavior of serum cytokines in type 1 autoimmune hepatitis. Dig Dis Sci. 2000;45:1028–1035.

    Article  CAS  PubMed  Google Scholar 

  131. Vergani D, Choudhuri K, Bogdanos DP, Mieli-Vergani G. Pathogenesis of autoimmune hepatitis. Clin Liver Dis. 2002;6:727–737.

    Article  PubMed  Google Scholar 

  132. Peters M. Actions of cytokines on the immune response and viral interactions: an overview. Hepatology. 1996;23:909–916.

    Article  CAS  PubMed  Google Scholar 

  133. Tilg H, Kaser A, Moschen AR. How to modulate inflammatory cytokines in liver diseases. Liver Int. 2006;26:1029–1039.

    Article  CAS  PubMed  Google Scholar 

  134. Cookson S, Constantini PK, Clare M, et al. Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis. Hepatology. 1999;30:851–856.

    Article  CAS  PubMed  Google Scholar 

  135. Czaja AJ, Cookson S, Constantini PK, et al. Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis. Gastroenterology. 1999;117:645–652.

    Article  CAS  PubMed  Google Scholar 

  136. Bittencourt PL, Palacios SA, Cancado EL, et al. Autoimmune hepatitis in Brazilian patients is not linked to tumor necrosis factor alpha polymorphisms at position -308. J Hepatol. 2001;35:24–28.

    Article  CAS  PubMed  Google Scholar 

  137. Tsikrikoni A, Kyriakou DS, Rigopoulou EI, et al. Markers of cell activation and apoptosis in bone marrow mononuclear cells of patients with autoimmune hepatitis type 1 and primary biliary cirrhosis. J Hepatol. 2005;42:393–399.

    Article  CAS  PubMed  Google Scholar 

  138. Atzeni F, Sarzi-Puttini P, Doria A, Iaccarino L, Capsoni F. Potential off-label use of infliximab in autoimmune and non-autoimmune diseases: a review. Autoimmun Rev. 2005;4:144–152.

    Article  CAS  PubMed  Google Scholar 

  139. Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu Rev Immunol. 1993;11:165–190.

    Article  CAS  PubMed  Google Scholar 

  140. Katsikis PD, Chu CQ, Brennan FM, Maini RN, Feldmann M. Immunoregulatory role of interleukin 10 in rheumatoid arthritis. J Exp Med. 1994;179:1517–1527.

    Article  CAS  PubMed  Google Scholar 

  141. Taylor PC, Feldmann M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol. 2009;5:578–582.

    Article  CAS  PubMed  Google Scholar 

  142. Singh JA, Christensen R, Wells GA, et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2009;CD007848.

  143. Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343–350.

    Article  CAS  PubMed  Google Scholar 

  144. Tilg H, Jalan R, Kaser A, et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. J Hepatol. 2003;38:419–425.

    Article  CAS  PubMed  Google Scholar 

  145. Boetticher NC, Peine CJ, Kwo P, et al. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology. 2008;135:1953–1960.

    Article  CAS  PubMed  Google Scholar 

  146. Schramm C, Schneider A, Marx A, Lohse AW. Adalimumab could suppress the activity of non alcoholic steatohepatitis (NASH). Z Gastroenterol. 2008;46:1369–1371.

    Article  CAS  PubMed  Google Scholar 

  147. Ozorio G, McGarity B, Bak H, et al. Autoimmune hepatitis following infliximab therapy for ankylosing spondylitis. Med J Aust. 2007;187:524–526.

    PubMed  Google Scholar 

  148. Tobon GJ, Canas C, Jaller JJ, Restrepo JC, Anaya JM. Serious liver disease induced by infliximab. Clin Rheumatol. 2007;26:578–581.

    Article  PubMed  Google Scholar 

  149. Marques M, Magro F, Cardoso H, et al. Infliximab-induced lupus-like syndrome associated with autoimmune hepatitis. Inflamm Bowel Dis. 2008;14:723–725.

    Article  CAS  PubMed  Google Scholar 

  150. Ramos-Casals M, Brito-Zeron P, Soto MJ, Cuadrado MJ, Khamashta MA. Autoimmune diseases induced by TNF-targeted therapies. Best Pract Res Clin Rheumatol. 2008;22:847–861.

    Article  CAS  PubMed  Google Scholar 

  151. Fairhurst DA, Sheehan-Dare R. Autoimmune hepatitis associated with infliximab in a patient with palmoplantar pustular psoriaisis. Clin Exp Dermatol. 2009;34:421–422.

    Article  CAS  PubMed  Google Scholar 

  152. Licastro F, Chiappelli M, Ianni M, Porcellini E. Tumor necrosis factor-alpha antagonists: differential clinical effects by different biotechnological molecules. Int J Immunopathol Pharmacol. 2009;22:567–572.

    CAS  PubMed  Google Scholar 

  153. Carlsen KM, Riis L, Madsen OR. Toxic hepatitis induced by infliximab in a patient with rheumatoid arthritis with no relapse after switching to etanercept. Clin Rheumatol. 2009;28:1001–1003.

    Article  CAS  PubMed  Google Scholar 

  154. Fuchs AC, Granowitz EV, Shapiro L, et al. Clinical, hematologic, and immunologic effects of interleukin-10 in humans. J Clin Immunol. 1996;16:291–303.

    Article  CAS  PubMed  Google Scholar 

  155. Huhn RD, Radwanski E, O’Connell SM, et al. Pharmacokinetics and immunomodulatory properties of intravenously administered recombinant human interleukin-10 in healthy volunteers. Blood. 1996;87:699–705.

    CAS  PubMed  Google Scholar 

  156. Huhn RD, Radwanski E, Gallo J, et al. Pharmacodynamics of subcutaneous recombinant human interleukin-10 in healthy volunteers. Clin Pharmacol Ther. 1997;62:171–180.

    Article  CAS  PubMed  Google Scholar 

  157. Rosenblum IY, Dayan AD. Carcinogenicity testing of IL-10: principles and practicalities. Hum Exp Toxicol. 2002;21:347–358.

    Article  CAS  PubMed  Google Scholar 

  158. Rosenblum IY, Johnson RC, Schmahai TJ. Preclinical safety evaluation of recombinant human interleukin-10. Regul Toxicol Pharmacol. 2002;35:56–71.

    Article  CAS  PubMed  Google Scholar 

  159. Skapenko A, Niedobitek GU, Kalden JR, Lipsky PE, Schulze-Koops H. Generation and regulation of human Th1-biased immune responses in vivo: a critical role for IL-4 and IL-10. J Immunol. 2004;172:6427–6434.

    CAS  PubMed  Google Scholar 

  160. Drazan KE, Wu L, Bullington D, Shaked A. Viral IL-10 gene therapy inhibits TNF-alpha and IL-1 beta, not IL-6, in the newborn endotoxemic mouse. J Pediatr Surg. 1996;31:411–414.

    Article  CAS  PubMed  Google Scholar 

  161. Thompson K, Maltby J, Fallowfield J, et al. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology. 1998;28:1597–1606.

    Article  CAS  PubMed  Google Scholar 

  162. Herfarth HH, Mohanty SP, Rath HC, Tonkonogy S, Sartor RB. Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers. Gut. 1996;39:836–845.

    Article  CAS  PubMed  Google Scholar 

  163. McHutchison JG, Giannelli G, Nyberg L, et al. A pilot study of daily subcutaneous interleukin-10 in patients with chronic hepatitis C infection. J Interferon Cytokine Res. 1999;19:1265–1270.

    Article  CAS  PubMed  Google Scholar 

  164. Nelson DR, Tu Z, Soldevila-Pico C, et al. Long-term interleukin 10 therapy in chronic hepatitis C patients has a proviral and anti-inflammatory effect. Hepatology. 2003;38:859–868.

    CAS  PubMed  Google Scholar 

  165. Fedorak RN, Gangl A, Elson CO, et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology. 2000;119:1473–1482.

    Article  CAS  PubMed  Google Scholar 

  166. Rachmawati H, Beljaars L, Reker-Smit C, et al. Pharmacokinetic and biodistribution profile of recombinant human interleukin-10 following intravenous administration in rats with extensive liver fibrosis. Pharm Res. 2004;21:2072–2078.

    Article  CAS  PubMed  Google Scholar 

  167. Evans JT, Shepard MM, Oates JC, Self SE, Reuben A. Rituximab-responsive cryoglobulinemic glomerulonephritis in a patient with autoimmune hepatitis. J Clin Gastroenterol. 2008;42:862–863.

    Article  PubMed  Google Scholar 

  168. Ram R, Ben-Bassat I, Shpilberg O, Polliack A, Raanani P. The late adverse events of rituximab therapy–rare but there!. Leuk Lymphoma. 2009;50:1083–1095.

    Article  CAS  PubMed  Google Scholar 

  169. Ilan Y. Oral tolerance: can we make it work? Hum Immunol. 2009;70:768–776.

    Article  CAS  PubMed  Google Scholar 

  170. Mizrahi M, Ilan Y. The gut mucosa as a site for induction of regulatory T-cells. Curr Pharm Des. 2009;15:1191–1202.

    Article  CAS  PubMed  Google Scholar 

  171. Mowat AM. Basic mechanisms and clinical implications of oral tolerance. Curr Opin Gastroenterol. 1999;15:546–556.

    Article  CAS  PubMed  Google Scholar 

  172. Faria AM, Weiner HL. Oral tolerance: therapeutic implications for autoimmune diseases. Clin Dev Immunol. 2006;13:143–157.

    Article  CAS  PubMed  Google Scholar 

  173. Navarro MJ, Higgins GC, Lohr KM, Myers LK. Amelioration of relapsing polychondritis in a child treated with oral collagen. Am J Med Sci. 2002;324:101–103.

    Article  CAS  PubMed  Google Scholar 

  174. Cai Q, Du X, Zhou B, et al. Induction of tolerance by oral administration of beta-tubulin in an animal model of autoimmune inner ear disease. ORL J Otorhinolaryngol Relat Spec. 2009;71:135–141.

    CAS  PubMed  Google Scholar 

  175. Gonnella PA, Del Nido PJ, McGowan FX. Oral tolerization with cardiac myosin peptide (614–629) ameliorates experimental autoimmune myocarditis: role of STAT 6 genes in BALB/CJ mice. J Clin Immunol. 2009;29:434–443.

    Article  CAS  PubMed  Google Scholar 

  176. Bresson D, Togher L, Rodrigo E, et al. Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest. 2006;116:1371–1381.

    Article  CAS  PubMed  Google Scholar 

  177. Broere F, Wieten L, Klein Koerkamp EI, et al. Oral or nasal antigen induces regulatory T cells that suppress arthritis and proliferation of arthritogenic T cells in joint draining lymph nodes. J Immunol. 2008;181:899–906.

    CAS  PubMed  Google Scholar 

  178. Gumanovskaya ML, Myers LK, Rosloniec EF, Stuart JM, Kang AH. Intravenous tolerization with type II collagen induces interleukin-4-and interleukin-10-producing CD4+ T cells. Immunology. 1999;97:466–473.

    Article  CAS  PubMed  Google Scholar 

  179. Bar-Or A, Vollmer T, Antel J, et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol. 2007;64:1407–1415.

    Article  PubMed  Google Scholar 

  180. Tutaj M, Szczepanik M. Epicutaneous (EC) immunization with myelin basic protein (MBP) induces TCRalphabeta+ CD4+ CD8+ double positive suppressor cells that protect from experimental autoimmune encephalomyelitis (EAE). J Autoimmun. 2007;28:208–215.

    Article  CAS  PubMed  Google Scholar 

  181. Chatila TA. Molecular mechanisms of regulatory T-cell development. Chem Immunol Allergy. 2008;94:16–28.

    Article  CAS  PubMed  Google Scholar 

  182. Chen W, Perruche S, Li J. CD4+ CD25+ T regulatory cells and TGF-beta in mucosal immune system: the good and the bad. Curr Med Chem. 2007;14:2245–2249.

    Article  CAS  PubMed  Google Scholar 

  183. Dubois B, Joubert G, Gomez de Aguero M, et al. Sequential role of plasmacytoid dendritic cells and regulatory T cells in oral tolerance. Gastroenterology. 2009;137:1019–1028.

    Article  CAS  PubMed  Google Scholar 

  184. Hanninen A, Harrison LC. Mucosal tolerance to prevent type 1 diabetes: can the outcome be improved in humans? Rev Diabet Stud. 2004;1:113–121.

    Article  PubMed  Google Scholar 

  185. Ishikawa H, Ochi H, Chen ML, et al. Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes. 2007;56:2103–2109.

    Article  CAS  PubMed  Google Scholar 

  186. Ochi H, Abraham M, Ishikawa H, et al. New immunosuppressive approaches: oral administration of CD3-specific antibody to treat autoimmunity. J Neurol Sci. 2008;274:9–12.

    Article  CAS  PubMed  Google Scholar 

  187. Perruche S, Zhang P, Liu Y, et al. CD3-specific antibody-induced immune tolerance involves transforming growth factor-beta from phagocytes digesting apoptotic T cells. Nat Med. 2008;14:528–535.

    Article  CAS  PubMed  Google Scholar 

  188. Longhi MS, Ma Y, Mitry RR, et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun. 2005;25:63–71.

    Article  CAS  PubMed  Google Scholar 

  189. Longhi MS, Hussain MJ, Mitry RR, et al. Functional study of CD4+ CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol. 2006;176:4484–4491.

    CAS  PubMed  Google Scholar 

  190. Longhi MS, Ma Y, Bogdanos DP, et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol. 2004;41:31–37.

    Article  CAS  PubMed  Google Scholar 

  191. Lan RY, Cheng C, Lian ZX, et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology. 2006;43:729–737.

    Article  PubMed  Google Scholar 

  192. Longhi MS, Mitry RR, Samyn M, et al. Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells. Hepatology. 2009;50:130–142.

    Article  CAS  PubMed  Google Scholar 

  193. Longhi MS, Meda F, Wang P, et al. Expansion and de novo generation of potentially therapeutic regulatory T cells in patients with autoimmune hepatitis. Hepatology. 2008;47:581–591.

    Article  CAS  PubMed  Google Scholar 

  194. Longhi MS, Ma Y, Mieli-Vergani G, Vergani D. Aetiopathogenesis of autoimmune hepatitis. J Autoimmun. 2009.

  195. Zhang C, Zhang J, Tian Z. The regulatory effect of natural killer cells: do “NK-reg cells” exist? Cell Mol Immunol. 2006;3:241–254.

    CAS  PubMed  Google Scholar 

  196. Tupin E, Kronenberg M. Activation of natural killer T cells by glycolipids. Methods Enzymol. 2006;417:185–201.

    Article  CAS  PubMed  Google Scholar 

  197. Lalazar G, Preston S, Zigmond E, Ben Yaacov A, Ilan Y. Glycolipids as immune modulatory tools. Mini Rev Med Chem. 2006;6:1249–1253.

    Article  CAS  PubMed  Google Scholar 

  198. Dennert G, Aswad F. The role of NKT cells in animal models of autoimmune hepatitis. Crit Rev Immunol. 2006;26:453–473.

    CAS  PubMed  Google Scholar 

  199. Kawamura H, Aswad F, Minagawa M, Govindarajan S, Dennert G. P2X7 receptors regulate NKT cells in autoimmune hepatitis. J Immunol. 2006;176:2152–2160.

    CAS  PubMed  Google Scholar 

  200. Nowak M, Stein-Streilein J. Invariant NKT cells and tolerance. Int Rev Immunol. 2007;26:95–119.

    Article  CAS  PubMed  Google Scholar 

  201. Ma X, Qiu DK, Li EL, Peng YS, Chen XY. Effect of T-cell vaccination in murine experimental autoimmune hepatitis. Zhonghua Gan Zang Bing Za Zhi. 2004;12:44–46.

    CAS  PubMed  Google Scholar 

  202. Mei Y, Wang Y, Xu L. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells. Immunol Lett. 2007;110:29–35.

    Article  CAS  PubMed  Google Scholar 

  203. Little PF. Structure and function of the human genome. Genome Res. 2005;15:1759–1766.

    Article  CAS  PubMed  Google Scholar 

  204. Wolfsberg TG, McEntyre J, Schuler GD. Guide to the draft human genome. Nature. 2001;409:824–826.

    Article  CAS  PubMed  Google Scholar 

  205. Honda M, Kawai H, Shirota Y, et al. cDNA microarray analysis of autoimmune hepatitis, primary biliary cirrhosis and consecutive disease manifestation. J Autoimmun. 2005;25:133–140.

    Article  CAS  PubMed  Google Scholar 

  206. Schumacher A, Kapranov P, Kaminsky Z, et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res. 2006;34:528–542.

    Article  CAS  PubMed  Google Scholar 

  207. Yokosawa S, Yoshizawa K, Ota M, et al. A genomewide DNA microsatellite association study of Japanese patients with autoimmune hepatitis type 1. Hepatology. 2007;45:384–390.

    Article  CAS  PubMed  Google Scholar 

  208. Agarwal K, Czaja AJ, Jones DE, Donaldson PT. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphisms and susceptibility to type 1 autoimmune hepatitis. Hepatology. 2000;31:49–53.

    Article  CAS  PubMed  Google Scholar 

  209. Hiraide A, Imazeki F, Yokosuka O, et al. Fas polymorphisms influence susceptibility to autoimmune hepatitis. Am J Gastroenterol. 2005;100:1322–1329.

    Article  CAS  PubMed  Google Scholar 

  210. Agarwal K, Czaja AJ, Donaldson PT. A functional Fas promoter polymorphism is associated with a severe phenotype in type 1 autoimmune hepatitis characterized by early development of cirrhosis. Tissue Antigens. 2007;69:227–235.

    Article  CAS  PubMed  Google Scholar 

  211. Fan LY, Tu XQ, Zhu Y, et al. Genetic association of cytokines polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. World J Gastroenterol. 2005;11:2768–2772.

    CAS  PubMed  Google Scholar 

  212. Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology. 2002;35:126–131.

    Article  CAS  PubMed  Google Scholar 

  213. Fan L, Tu X, Zhu Y, et al. Genetic association of vitamin D receptor polymorphisms with autoimmune hepatitis and primary biliary cirrhosis in the Chinese. J Gastroenterol Hepatol. 2005;20:249–255.

    Article  CAS  PubMed  Google Scholar 

  214. Vogel A, Strassburg CP, Manns MP. 77 C/G mutation in the tyrosine phosphatase CD45 gene and autoimmune hepatitis: evidence for a genetic link. Genes Immun. 2003;4:79–81.

    Article  CAS  PubMed  Google Scholar 

  215. Esteghamat F, Noorinayer B, Sanati MH, et al. C77G mutation in protein tyrosine phosphatase CD45 gene and autoimmune hepatitis. Hepatol Res. 2005;32:154–157.

    Article  CAS  PubMed  Google Scholar 

  216. Aqel BA, Machicao V, Rosser B, et al. Efficacy of tacrolimus in the treatment of steroid refractory autoimmune hepatitis. J Clin Gastroenterol. 2004;38:805–809.

    Article  CAS  PubMed  Google Scholar 

  217. Malekzadeh R, Nasseri-Moghaddam S, Kaviani MJ, et al. Cyclosporin A is a promising alternative to corticosteroids in autoimmune hepatitis. Dig Dis Sci. 2001;46:1321–1327.

    Article  CAS  PubMed  Google Scholar 

  218. Aw MM, Dhawan A, Samyn M, Bargiota A, Mieli-Vergani G. Mycophenolate mofetil as rescue treatment for autoimmune liver disease in children: a 5-year follow-up. J Hepatol. 2009;51:156–160.

    Article  CAS  PubMed  Google Scholar 

  219. Wiegand J, Schuler A, Kanzler S, et al. Budesonide in previously untreated autoimmune hepatitis. Liver Int. 2005;25:927–934.

    Article  CAS  PubMed  Google Scholar 

  220. Zandieh I, Krygier D, Wong V, et al. The use of budesonide in the treatment of autoimmune hepatitis in Canada. Can J Gastroenterol. 2008;22:388–392.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. Czaja.

Additional information

This work received no financial support from a funding agency or institution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czaja, A.J. Emerging Opportunities for Site-Specific Molecular and Cellular Interventions in Autoimmune Hepatitis. Dig Dis Sci 55, 2712–2726 (2010). https://doi.org/10.1007/s10620-009-1122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-1122-8

Keywords

Navigation