Skip to main content

Advertisement

Log in

Advancing Biologic Therapy for Refractory Autoimmune Hepatitis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Biologic agents may satisfy an unmet clinical need for treatment of refractory autoimmune hepatitis. The goals of this review are to present the types and results of biologic therapy for refractory autoimmune hepatitis, indicate opportunities to improve and expand biologic treatment, and encourage comparative clinical trials. English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Rituximab (monoclonal antibodies against CD20 on B cells), infliximab (monoclonal antibodies against tumor necrosis factor-alpha), low-dose recombinant interleukin 2 (regulatory T cell promoter), and belimumab (monoclonal antibodies against B cell activating factor) have induced laboratory improvement in small cohorts with refractory autoimmune hepatitis. Ianalumab (monoclonal antibodies against the receptor for B cell activating factor) is in clinical trial. These agents target critical pathogenic pathways, but they may also have serious side effects. Blockade of the B cell activating factor or its receptors may disrupt pivotal B and T cell responses, and recombinant interleukin 2 complexed with certain interleukin 2 antibodies may selectively expand the regulatory T cell population. A proliferation-inducing ligand that enhances T cell proliferation and survival is an unevaluated, potentially pivotal, therapeutic target. Fully human antibodies, expanded target options, improved targeting precision, more effective delivery systems, and biosimilar agents promise to improve efficacy, safety, and accessibility. In conclusion, biologic agents target key pathogenic pathways in autoimmune hepatitis, and early experiences in refractory disease encourage clarification of the preferred target, rigorous clinical trial, and comparative evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Longhi MS, Ma Y, Mieli-Vergani G, Vergani D. Aetiopathogenesis of autoimmune hepatitis. J Autoimmun. 2010;34:7–14.

    Article  CAS  PubMed  Google Scholar 

  2. Czaja AJ. Transitioning from idiopathic to explainable autoimmune hepatitis. Dig Dis Sci. 2015;60:2881–2900.

    Article  CAS  PubMed  Google Scholar 

  3. Mieli-Vergani G, Vergani D, Czaja AJ et al. Autoimmune hepatitis. Nat Rev Dis Primers. 2018;4:18017.

    Article  PubMed  Google Scholar 

  4. Kakiuchi T, Chesnut RW, Grey HM. B cells as antigen-presenting cells: the requirement for B cell activation. J Immunol. 1983;131:109–114.

    CAS  PubMed  Google Scholar 

  5. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985;314:537–539.

    Article  CAS  PubMed  Google Scholar 

  6. Constant S, Schweitzer N, West J, Ranney P, Bottomly K. B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J Immunol. 1995;155:3734–3741.

    CAS  PubMed  Google Scholar 

  7. Constant SL. B lymphocytes as antigen-presenting cells for CD4+ T cell priming in vivo. J Immunol. 1999;162:5695–5703.

    CAS  PubMed  Google Scholar 

  8. Rivera A, Chen CC, Ron N, Dougherty JP, Ron Y. Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol. 2001;13:1583–1593.

    Article  CAS  PubMed  Google Scholar 

  9. Lapointe R, Bellemare-Pelletier A, Housseau F, Thibodeau J, Hwu P. CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res. 2003;63:2836–2843.

    CAS  PubMed  Google Scholar 

  10. Salinas GF, Braza F, Brouard S, Tak PP, Baeten D. The role of B lymphocytes in the progression from autoimmunity to autoimmune disease. Clin Immunol. 2013;146:34–45.

    Article  CAS  PubMed  Google Scholar 

  11. Hamilton JA, Hsu HC, Mountz JD. Role of production of type I interferons by B cells in the mechanisms and pathogenesis of systemic lupus erythematosus. Discov Med. 2018;25:21–29.

    PubMed  Google Scholar 

  12. Bao Y, Liu X, Han C et al. Identification of IFN-gamma-producing innate B cells. Cell Res. 2014;24:161–176.

    Article  CAS  PubMed  Google Scholar 

  13. Olalekan SA, Cao Y, Hamel KM, Finnegan A. B cells expressing IFN-gamma suppress Treg-cell differentiation and promote autoimmune experimental arthritis. Eur J Immunol. 2015;45:988–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fillatreau S. B cells and their cytokine activities implications in human diseases. Clin Immunol. 2018;186:26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Menard LC, Minns LA, Darche S et al. B cells amplify IFN-gamma production by T cells via a TNF-alpha-mediated mechanism. J Immunol. 2007;179:4857–4866.

    Article  CAS  PubMed  Google Scholar 

  16. Yu M, Wen S, Wang M et al. TNF-alpha-secreting B cells contribute to myocardial fibrosis in dilated cardiomyopathy. J Clin Immunol. 2013;33:1002–1008.

    Article  CAS  PubMed  Google Scholar 

  17. Opata MM, Ye Z, Hollifield M, Garvy BA. B cell production of tumor necrosis factor in response to Pneumocystis murina infection in mice. Infect Immun. 2013;81:4252–4260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Longhi MS, Ma Y, Bogdanos DP et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol. 2004;41:31–37.

    Article  CAS  PubMed  Google Scholar 

  19. Liberal R, Grant CR, Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells: mechanisms of suppression and impairment in autoimmune liver disease. IUBMB Life. 2015;67:88–97.

    Article  CAS  PubMed  Google Scholar 

  20. Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells in autoimmune hepatitis: an updated overview. J Autoimmun. 2021;119:102619.

  21. Mack CL, Adams D, Assis DN et al. Diagnosis and management of autoimmune hepatitis in adults and children: 2019 practice guidance and guidelines from the American Association for the Study of Liver Diseases. Hepatology. 2020;72:671–722.

    Article  PubMed  Google Scholar 

  22. Jones D, Manns MP, Terracciano L, Torbenson M, Vierling JM. Unmet needs and new models for future trials in autoimmune hepatitis. Lancet Gastroenterol Hepatol. 2018;3:363–370.

    Article  PubMed  Google Scholar 

  23. Dyson JK, De Martin E, Dalekos GN et al. Review article: unanswered clinical and research questions in autoimmune hepatitis-conclusions of the International Autoimmune Hepatitis Group Research Workshop. Aliment Pharmacol Ther. 2019;49:528–536.

    Article  PubMed  Google Scholar 

  24. Vierling JM, Kerkar N, Czaja AJ et al. Immunosuppressive treatment regimens in autoimmune hepatitis: systematic reviews and meta-analyses supporting American Association for the Study of Liver Diseases guidelines. Hepatology. 2020;72:753–769.

    Article  PubMed  Google Scholar 

  25. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  CAS  PubMed  Google Scholar 

  26. Rosman Z, Shoenfeld Y, Zandman-Goddard G. Biologic therapy for autoimmune diseases: an update. BMC Med. 2013;11:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015;20:122–128.

    Article  CAS  PubMed  Google Scholar 

  28. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2019;18:19–40.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao Q, Li X, Li Y et al. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B. 2021;11:941–960.

    Article  CAS  PubMed  Google Scholar 

  30. Prieto-Pena D, Dasgupta B. Biologic agents and small-molecule inhibitors in systemic autoimmune conditions: an update. Pol Arch Intern Med. 2021;131:171–181.

    PubMed  Google Scholar 

  31. Selvarajah V, Montano-Loza AJ, Czaja AJ. Systematic review: managing suboptimal treatment responses in autoimmune hepatitis with conventional and nonstandard drugs. Aliment Pharmacol Ther. 2012;36:691–707.

    Article  CAS  PubMed  Google Scholar 

  32. Reff ME, Carner K, Chambers KS et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435–445.

    Article  CAS  PubMed  Google Scholar 

  33. Pescovitz MD. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am J Transplant. 2006;6:859–866.

    Article  CAS  PubMed  Google Scholar 

  34. Liossis SN, Sfikakis PP. Rituximab-induced B cell depletion in autoimmune diseases: potential effects on T cells. Clin Immunol. 2008;127:280–285.

  35. Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol. 2010;10:236–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beland K, Marceau G, Labardy A, Bourbonnais S, Alvarez F. Depletion of B cells induces remission of autoimmune hepatitis in mice through reduced antigen presentation and help to T cells. Hepatology. 2015;62:1511–1523.

    Article  CAS  PubMed  Google Scholar 

  37. Santos ES, Arosemena LR, Raez LE, O’Brien C, Regev A. Successful treatment of autoimmune hepatitis and idiopathic thrombocytopenic purpura with the monoclonal antibody, rituximab: case report and review of literature. Liver Int. 2006;26:625–629.

    Article  CAS  PubMed  Google Scholar 

  38. Evans JT, Shepard MM, Oates JC, Self SE, Reuben A. Rituximab-responsive cryoglobulinemic glomerulonephritis in a patient with autoimmune hepatitis. J Clin Gastroenterol. 2008;42:862–863.

    Article  PubMed  Google Scholar 

  39. Barth E, Clawson J. A case of autoimmune hepatitis treated with rituximab. Case Rep Gastroenterol. 2010;4:502–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carey EJ, Somaratne K, Rakela J. Successful rituximab therapy in refractory autoimmune hepatitis and Evans syndrome. Rev Med Chil. 2011;139:1484–1487.

    Article  PubMed  Google Scholar 

  41. D’Agostino D, Costaguta A, Alvarez F. Successful treatment of refractory autoimmune hepatitis with rituximab. Pediatrics. 2013;132:e526-530.

    Article  PubMed  Google Scholar 

  42. Burak KW, Swain MG, Santodomino-Garzon T et al. Rituximab for the treatment of patients with autoimmune hepatitis who are refractory or intolerant to standard therapy. Can J Gastroenterol. 2013;27:273–280.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Al-Busafi SA, Michel RP, Deschenes M. Rituximab for refractory autoimmune hepatitis: a case report. Arab J Gastroenterol. 2013;14:135–138.

    Article  PubMed  Google Scholar 

  44. Jarasvaraparn C, Imran H, Siddiqui A, Wilson F, Gremse DA. Association of autoimmune hepatitis type 1 in a child with Evans syndrome. World J Hepatol. 2017;9:1008–1012.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Than NN, Hodson J, Schmidt-Martin D et al. Efficacy of rituximab in difficult-to-manage autoimmune hepatitis: Results from the International Autoimmune Hepatitis Group. JHEP Rep. 2019;1:437–445.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Appanna GD, Pembroke TPI, Miners KL et al. Rituximab depletion of intrahepatic B cells to control refractory hepatic autoimmune overlap syndrome. QJM. 2019;112:793–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lim TY, Martinez-Llordella M, Kodela E et al. Low-dose interleukin-2 for refractory autoimmune hepatitis. Hepatology. 2018;68:1649–1652.

    Article  PubMed  Google Scholar 

  48. Czaja AJ. Exploring the pathogenic role and therapeutic implications of interleukin 2 in autoimmune hepatitis. Dig Dis Sci. 2021;66:2493–2512.

    Article  CAS  PubMed  Google Scholar 

  49. Buitrago-Molina LE, Pietrek J, Noyan F, et al. Treg-specific IL-2 therapy can reestablish intrahepatic immune regulation in autoimmune hepatitis. J Autoimmun. 2021;117:102591.

  50. Weiler-Normann C, Wiegard C, Schramm C, Lohse AW. A case of difficult-to-treat autoimmune hepatitis successfully managed by TNF-alpha blockade. Am J Gastroenterol. 2009;104:2877–2878.

    Article  PubMed  Google Scholar 

  51. Weiler-Normann C, Schramm C, Quaas A et al. Infliximab as a rescue treatment in difficult-to-treat autoimmune hepatitis. J Hepatol. 2013;58:529–534.

    Article  CAS  PubMed  Google Scholar 

  52. Arvaniti P, Giannoulis G, Gabeta S, et al. Belimumab is a promising third-line treatment option for refractory autoimmune hepatitis. JHEP Rep. 2020;2:100123.

  53. Engel B, Taubert R, Jaeckel E, Manns MP. The future of autoimmune liver diseases - Understanding pathogenesis and improving morbidity and mortality. Liver Int. 2020;40:149–153.

    Article  PubMed  Google Scholar 

  54. Halliday N, Dyson JK, Thorburn D, Lohse AW, Heneghan MA. Review article: experimental therapies in autoimmune hepatitis. Aliment Pharmacol Ther. 2020;52:1134–1149.

    PubMed  Google Scholar 

  55. Jang DI, Lee AH, Shin HY et al. The role of tumor necrosis factor alpha (TNF-alpha) in autoimmune disease and current TNF-alpha inhibitors in therapeutics. Int J Mol Sci. 2021;22:2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lim H, Lee SH, Lee HT et al. Structural biology of the TNF-alpha antagonists used in the treatment of rheumatoid arthritis. Int J Mol Sci. 2018;19:768.

    Article  PubMed Central  Google Scholar 

  57. Schellekens H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov. 2002;1:457–462.

    Article  CAS  PubMed  Google Scholar 

  58. Czaja AJ. Review article: targeting the B cell activation system in autoimmune hepatitis. Aliment Pharm Ther. 2021;54:902–922.

    Article  CAS  Google Scholar 

  59. Singh JA, Wells GA, Christensen R, et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev. 2011:CD008794.

  60. Chang C, Tanaka A, Bowlus C, Gershwin ME. The use of biologics in the treatment of autoimmune liver disease. Expert Opin Investig Drugs. 2020;29:385–398.

    Article  CAS  PubMed  Google Scholar 

  61. Cook GC, Mulligan R, Sherlock S. Controlled prospective trial of corticosteroid therapy in active chronic hepatitis. Q J Med. 1971;40:159–185.

    Article  CAS  PubMed  Google Scholar 

  62. Soloway RD, Summerskill WH, Baggenstoss AH et al. Clinical, biochemical, and histological remission of severe chronic active liver disease: a controlled study of treatments and early prognosis. Gastroenterology. 1972;63:820–833.

    Article  CAS  PubMed  Google Scholar 

  63. Murray-Lyon IM, Stern RB, Williams R. Controlled trial of prednisone and azathioprine in active chronic hepatitis. Lancet. 1973;1:735–737.

    Article  CAS  PubMed  Google Scholar 

  64. Pratt DS, Flavin DP, Kaplan MM. The successful treatment of autoimmune hepatitis with 6-mercaptopurine after failure with azathioprine. Gastroenterology. 1996;110:271–274.

    Article  CAS  PubMed  Google Scholar 

  65. Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus. 2005;14:s2-8.

    Article  CAS  PubMed  Google Scholar 

  66. Czaja AJ, Carpenter HA. Empiric therapy of autoimmune hepatitis with mycophenolate mofetil: comparison with conventional treatment for refractory disease. J Clin Gastroenterol. 2005;39:819–825.

    Article  CAS  PubMed  Google Scholar 

  67. Hubener S, Oo YH, Than NN et al. Efficacy of 6-mercaptopurine as second-line treatment for patients with autoimmune hepatitis and azathioprine intolerance. Clin Gastroenterol Hepatol. 2016;14:445–453.

    Article  PubMed  Google Scholar 

  68. Czaja AJ. Review article: opportunities to improve and expand thiopurine therapy for autoimmune hepatitis. Aliment Pharmacol Ther. 2020;51:1286–1304.

    Article  CAS  PubMed  Google Scholar 

  69. Allison AC. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology. 2000;47:63–83.

    Article  CAS  PubMed  Google Scholar 

  70. Czaja AJ. Drug choices in autoimmune hepatitis: Part B - nonsteroids. Expert Rev Gastroenterol Hepatol. 2012;6:617–635.

    Article  CAS  PubMed  Google Scholar 

  71. Nadler LM, Ritz J, Hardy R et al. A unique cell surface antigen identifying lymphoid malignancies of B cell origin. J Clin Invest. 1981;67:134–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Einfeld DA, Brown JP, Valentine MA, Clark EA, Ledbetter JA. Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains. EMBO J. 1988;7:711–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125:1678–1685.

    CAS  PubMed  Google Scholar 

  74. Tedder TF, Streuli M, Schlossman SF, Saito H. Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc Natl Acad Sci U S A. 1988;85:208–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kanzaki M, Shibata H, Mogami H, Kojima I. Expression of calcium-permeable cation channel CD20 accelerates progression through the G1 phase in Balb/c 3T3 cells. J Biol Chem. 1995;270:13099–13104.

    Article  CAS  PubMed  Google Scholar 

  76. Li H, Ayer LM, Lytton J, Deans JP. Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem. 2003;278:42427–42434.

    Article  CAS  PubMed  Google Scholar 

  77. Bellosillo B, Villamor N, Lopez-Guillermo A et al. Complement-mediated cell death induced by rituximab in B-cell lymphoproliferative disorders is mediated in vitro by a caspase-independent mechanism involving the generation of reactive oxygen species. Blood. 2001;98:2771–2777.

    Article  CAS  PubMed  Google Scholar 

  78. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22:7359–7368.

    Article  CAS  PubMed  Google Scholar 

  79. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6:443–446.

    Article  CAS  PubMed  Google Scholar 

  80. Byrd JC, Kitada S, Flinn IW et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood. 2002;99:1038–1043.

    Article  CAS  PubMed  Google Scholar 

  81. Czaja AJ. Targeting apoptosis in autoimmune hepatitis. Dig Dis Sci. 2014;59:2890–2904.

    Article  CAS  PubMed  Google Scholar 

  82. Tamaru M, Nishioji K, Kobayashi Y et al. Liver-infiltrating T lymphocytes are attracted selectively by IFN-inducible protein-10. Cytokine. 2000;12:299–308.

    Article  CAS  PubMed  Google Scholar 

  83. Nishioji K, Okanoue T, Itoh Y et al. Increase of chemokine interferon-inducible protein-10 (IP-10) in the serum of patients with autoimmune liver diseases and increase of its mRNA expression in hepatocytes. Clin Exp Immunol. 2001;123:271–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nishikawa H, Enomoto H, Iwata Y, et al. B-cell activating factor belonging to the tumor necrosis factor family and interferon-gamma-inducible protein-10 in autoimmune hepatitis. Medicine (Baltimore). 2016;95:e3194.

  85. Nagayama K, Enomoto N, Miyasaka Y et al. Overexpression of interferon gamma-inducible protein 10 in the liver of patients with type I autoimmune hepatitis identified by suppression subtractive hybridization. Am J Gastroenterol. 2001;96:2211–2217.

    Article  CAS  PubMed  Google Scholar 

  86. Oo YH, Banz V, Kavanagh D et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J Hepatol. 2012;57:1044–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Antonelli A, Ferrari SM, Giuggioli D et al. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev. 2014;13:272–280.

    Article  CAS  PubMed  Google Scholar 

  88. Czaja AJ. Review article: Chemokines as orchestrators of autoimmune hepatitis and potential therapeutic targets. Aliment Pharmacol Ther. 2014;40:261–279.

    Article  CAS  PubMed  Google Scholar 

  89. Sfikakis PP, Souliotis VL, Fragiadaki KG et al. Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin Immunol. 2007;123:66–73.

    Article  CAS  PubMed  Google Scholar 

  90. Tsuda M, Moritoki Y, Lian ZX et al. Biochemical and immunologic effects of rituximab in patients with primary biliary cirrhosis and an incomplete response to ursodeoxycholic acid. Hepatology. 2012;55:512–521.

    Article  CAS  PubMed  Google Scholar 

  91. Stasi R, Cooper N, Del Poeta G et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood. 2008;112:1147–1150.

    Article  CAS  PubMed  Google Scholar 

  92. Saadoun D, Rosenzwajg M, Landau D et al. Restoration of peripheral immune homeostasis after rituximab in mixed cryoglobulinemia vasculitis. Blood. 2008;111:5334–5341.

    Article  CAS  PubMed  Google Scholar 

  93. Vallerskog T, Gunnarsson I, Widhe M et al. Treatment with rituximab affects both the cellular and the humoral arm of the immune system in patients with SLE. Clin Immunol. 2007;122:62–74.

    Article  CAS  PubMed  Google Scholar 

  94. Feuchtenberger M, Muller S, Roll P et al. Frequency of regulatory T cells is not affected by transient B cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Open Rheumatol J. 2008;2:81–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bouaziz JD, Calbo S, Maho-Vaillant M et al. IL-10 produced by activated human B cells regulates CD4(+) T-cell activation in vitro. Eur J Immunol. 2010;40:2686–2691.

    Article  CAS  PubMed  Google Scholar 

  96. Bouaziz JD, Le Buanec H, Saussine A, Bensussan A, Bagot M. IL-10 producing regulatory B cells in mice and humans: state of the art. Curr Mol Med. 2012;12:519–527.

    Article  CAS  PubMed  Google Scholar 

  97. Tedder TF. B10 cells: a functionally defined regulatory B cell subset. J Immunol. 2015;194:1395–1401.

    Article  CAS  PubMed  Google Scholar 

  98. Wang L, Fu Y, Chu Y. Regulatory B cells. Adv Exp Med Biol. 2020;1254:87–103.

    Article  CAS  PubMed  Google Scholar 

  99. Lee KM, Stott RT, Zhao G et al. TGF-beta-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance. Eur J Immunol. 2014;44:1728–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schroder C, Azimzadeh AM, Wu G et al. Anti-CD20 treatment depletes B-cells in blood and lymphatic tissue of cynomolgus monkeys. Transpl Immunol. 2003;12:19–28.

    Article  CAS  PubMed  Google Scholar 

  101. Maloney DG, Liles TM, Czerwinski DK et al. Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood. 1994;84:2457–2466.

    Article  CAS  PubMed  Google Scholar 

  102. Sidner RA, Book BK, Agarwal A et al. In vivo human B-cell subset recovery after in vivo depletion with rituximab, anti-human CD20 monoclonal antibody. Hum Antibodies. 2004;13:55–62.

    Article  CAS  PubMed  Google Scholar 

  103. Gong Q, Ou Q, Ye S et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol. 2005;174:817–826.

    Article  CAS  PubMed  Google Scholar 

  104. Mei HE, Frolich D, Giesecke C et al. Steady-state generation of mucosal IgA+ plasmablasts is not abrogated by B-cell depletion therapy with rituximab. Blood. 2010;116:5181–5190.

    Article  CAS  PubMed  Google Scholar 

  105. Ghielmini M, Rufibach K, Salles G et al. Single agent rituximab in patients with follicular or mantle cell lymphoma: clinical and biological factors that are predictive of response and event-free survival as well as the effect of rituximab on the immune system: a study of the Swiss Group for Clinical Cancer Research (SAKK). Ann Oncol. 2005;16:1675–1682.

    Article  CAS  PubMed  Google Scholar 

  106. Du FH, Mills EA, Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun Highlights. 2017;8:12.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Randall KL. Rituximab in autoimmune diseases. Aust Prescr. 2016;39:131–134.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Keystone E, Fleischmann R, Emery P et al. Safety and efficacy of additional courses of rituximab in patients with active rheumatoid arthritis: an open-label extension analysis. Arthritis Rheum. 2007;56:3896–3908.

    Article  CAS  PubMed  Google Scholar 

  109. Townsend MJ, Monroe JG, Chan AC. B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol Rev. 2010;237:264–283.

    Article  CAS  PubMed  Google Scholar 

  110. van Vollenhoven RF, Emery P, Bingham CO 3rd et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis. 2013;72:1496–1502.

    Article  PubMed  Google Scholar 

  111. Bingham CO 3rd, Looney RJ, Deodhar A et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum. 2010;62:64–74.

    Article  CAS  PubMed  Google Scholar 

  112. Bearden CM, Agarwal A, Book BK et al. Rituximab inhibits the in vivo primary and secondary antibody response to a neoantigen, bacteriophage phiX174. Am J Transplant. 2005;5:50–57.

    Article  CAS  PubMed  Google Scholar 

  113. Buch MH, Smolen JS, Betteridge N et al. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70:909–920.

    Article  CAS  PubMed  Google Scholar 

  114. Eisenberg RA, Jawad AF, Boyer J et al. Rituximab-treated patients have a poor response to influenza vaccination. J Clin Immunol. 2013;33:388–396.

    Article  CAS  PubMed  Google Scholar 

  115. van Vollenhoven RF, Emery P, Bingham CO 3rd et al. Long-term safety of patients receiving rituximab in rheumatoid arthritis clinical trials. J Rheumatol. 2010;37:558–567.

    Article  PubMed  Google Scholar 

  116. Vugmeyster Y, Beyer J, Howell K et al. Depletion of B cells by a humanized anti-CD20 antibody PRO70769 in Macaca fascicularis. J Immunother. 2005;28:212–219.

    Article  CAS  PubMed  Google Scholar 

  117. Uchiyama S, Suzuki Y, Otake K et al. Development of novel humanized anti-CD20 antibodies based on affinity constant and epitope. Cancer Sci. 2010;101:201–209.

    Article  CAS  PubMed  Google Scholar 

  118. Ahmadzadeh V, Farajnia S, Hosseinpour Feizi MA, Khavarinejad RA. Design, expression and characterization of a single chain anti-CD20 antibody; a germline humanized antibody derived from Rituximab. Protein Expr Purif. 2014;102:45–51.

    Article  CAS  PubMed  Google Scholar 

  119. Khoo YL, Cheah SH, Chong H. Humanization of chimeric anti-CD20 antibody by logical and bioinformatics approach with retention of biological activity. Immunotherapy. 2017;9:567–577.

    Article  CAS  PubMed  Google Scholar 

  120. Trabik YA, Moenes EM, Al-Ghobashy MA, Nebsen M, Ayad MF. Analytical comparability study of anti-CD20 monoclonal antibodies rituximab and obinutuzumab using a stability-indicating orthogonal testing protocol: Effect of structural optimization and glycoengineering. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1159:122359.

  121. Tony HP, Burmester G, Schulze-Koops H et al. Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID). Arthritis Res Ther. 2011;13:R75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roberts DM, Jones RB, Smith RM et al. Rituximab-associated hypogammaglobulinemia: incidence, predictors and outcomes in patients with multi-system autoimmune disease. J Autoimmun. 2015;57:60–65.

    Article  CAS  PubMed  Google Scholar 

  123. Furst DE. Serum immunoglobulins and risk of infection: how low can you go? Semin Arthritis Rheum. 2009;39:18–29.

    Article  CAS  PubMed  Google Scholar 

  124. Gottenberg JE, Ravaud P, Bardin T et al. Risk factors for severe infections in patients with rheumatoid arthritis treated with rituximab in the autoimmunity and rituximab registry. Arthritis Rheum. 2010;62:2625–2632.

    Article  CAS  PubMed  Google Scholar 

  125. Edwards JC, Cambridge G. Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology (Oxford). 2001;40:205–211.

    Article  CAS  PubMed  Google Scholar 

  126. Leandro MJ, Edwards JC, Cambridge G. Clinical outcome in 22 patients with rheumatoid arthritis treated with B lymphocyte depletion. Ann Rheum Dis. 2002;61:883–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Agarwal A, Vieira CA, Book BK et al. Rituximab, anti-CD20, induces in vivo cytokine release but does not impair ex vivo T-cell responses. Am J Transplant. 2004;4:1357–1360.

    Article  CAS  PubMed  Google Scholar 

  128. Salmon JH, Cacoub P, Combe B, et al. Late-onset neutropenia after treatment with rituximab for rheumatoid arthritis and other autoimmune diseases: data from the AutoImmunity and Rituximab registry. RMD Open. 2015;1:e000034.

  129. Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: past, present and future. Int Immunol. 2015;27:55–62.

    Article  CAS  PubMed  Google Scholar 

  130. Kaymakcalan Z, Sakorafas P, Bose S et al. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol. 2009;131:308–316.

    Article  CAS  PubMed  Google Scholar 

  131. Bradley JR. TNF-mediated inflammatory disease. J Pathol. 2008;214:149–160.

    Article  CAS  PubMed  Google Scholar 

  132. Mitoma H, Horiuchi T, Hatta N et al. Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through transmembrane TNF-alpha. Gastroenterology. 2005;128:376–392.

    Article  CAS  PubMed  Google Scholar 

  133. Danese S. Mechanisms of action of infliximab in inflammatory bowel disease: an anti-inflammatory multitasker. Dig Liver Dis. 2008;40:S225-228.

    Article  CAS  PubMed  Google Scholar 

  134. Melsheimer R, Geldhof A, Apaolaza I, Schaible T. Remicade((R)) (infliximab): 20 years of contributions to science and medicine. Biologics. 2019;13:139–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Peck R, Brockhaus M, Frey JR. Cell surface tumor necrosis factor (TNF) accounts for monocyte- and lymphocyte-mediated killing of TNF-resistant target cells. Cell Immunol. 1989;122:1–10.

    Article  PubMed  Google Scholar 

  136. Horiuchi T, Morita C, Tsukamoto H et al. Increased expression of membrane TNF-alpha on activated peripheral CD8+ T cells in systemic lupus erythematosus. Int J Mol Med. 2006;17:875–879.

    CAS  PubMed  Google Scholar 

  137. Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018;101:14–18.

    Article  CAS  PubMed  Google Scholar 

  138. Caron G, Delneste Y, Aubry JP et al. Human NK cells constitutively express membrane TNF-alpha (mTNFalpha) and present mTNFalpha-dependent cytotoxic activity. Eur J Immunol. 1999;29:3588–3595.

    Article  CAS  PubMed  Google Scholar 

  139. Falvo JV, Tsytsykova AV, Goldfeld AE. Transcriptional control of the TNF gene. Curr Dir Autoimmun. 2010;11:27–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fishman M. Cytolytic activities of activated macrophages versus paraformaldehyde-fixed macrophages; soluble versus membrane-associated TNF. Cell Immunol. 1991;137:164–174.

    Article  CAS  PubMed  Google Scholar 

  141. Sedger LM, McDermott MF. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev. 2014;25:453–472.

    Article  CAS  PubMed  Google Scholar 

  142. Black RA, Rauch CT, Kozlosky CJ et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997;385:729–733.

    Article  CAS  PubMed  Google Scholar 

  143. Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford). 2010;49:1215–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vandenabeele P, Declercq W, Beyaert R, Fiers W. Two tumour necrosis factor receptors: structure and function. Trends Cell Biol. 1995;5:392–399.

    Article  CAS  PubMed  Google Scholar 

  145. Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996;334:1717–1725.

    Article  CAS  PubMed  Google Scholar 

  146. Chan FK, Chun HJ, Zheng L et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science. 2000;288:2351–2354.

    Article  CAS  PubMed  Google Scholar 

  147. MacEwan DJ. TNF ligands and receptors–a matter of life and death. Br J Pharmacol. 2002;135:855–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15:362–374.

    Article  CAS  PubMed  Google Scholar 

  149. Nagar M, Jacob-Hirsch J, Vernitsky H et al. TNF activates a NF-kappaB-regulated cellular program in human CD45RA- regulatory T cells that modulates their suppressive function. J Immunol. 2010;184:3570–3581.

    Article  CAS  PubMed  Google Scholar 

  150. Eissner G, Kirchner S, Lindner H et al. Reverse signaling through transmembrane TNF confers resistance to lipopolysaccharide in human monocytes and macrophages. J Immunol. 2000;164:6193–6198.

    Article  CAS  PubMed  Google Scholar 

  151. Eissner G, Kolch W, Scheurich P. Ligands working as receptors: reverse signaling by members of the TNF superfamily enhance the plasticity of the immune system. Cytokine Growth Factor Rev. 2004;15:353–366.

    Article  CAS  PubMed  Google Scholar 

  152. Lee WH, Seo D, Lim SG, Suk K. Reverse signaling of tumor necrosis factor superfamily proteins in macrophages and microglia: superfamily portrait in the neuroimmune interface. Front Immunol. 2019;10:262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Juhasz K, Buzas K, Duda E. Importance of reverse signaling of the TNF superfamily in immune regulation. Expert Rev Clin Immunol. 2013;9:335–348.

    Article  CAS  PubMed  Google Scholar 

  154. Kaufman DR, Choi Y. Signaling by tumor necrosis factor receptors: pathways, paradigms and targets for therapeutic modulation. Int Rev Immunol. 1999;18:405–427.

    Article  CAS  PubMed  Google Scholar 

  155. Chen X, Subleski JJ, Kopf H et al. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J Immunol. 2008;180:6467–6471.

    Article  CAS  PubMed  Google Scholar 

  156. Chen X, Oppenheim JJ. The phenotypic and functional consequences of tumour necrosis factor receptor type 2 expression on CD4(+) FoxP3(+) regulatory T cells. Immunology. 2011;133:426–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen X, Hamano R, Subleski JJ et al. Expression of costimulatory TNFR2 induces resistance of CD4+FoxP3- conventional T cells to suppression by CD4+FoxP3+ regulatory T cells. J Immunol. 2010;185:174–182.

    Article  CAS  PubMed  Google Scholar 

  158. Chen X, Oppenheim JJ. Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Lett. 2011;585:3611–3618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV. A novel domain within the 55 kd TNF receptor signals cell death. Cell. 1993;74:845–853.

    Article  CAS  PubMed  Google Scholar 

  160. Puimege L, Libert C, Van Hauwermeiren F. Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev. 2014;25:285–300.

    Article  CAS  PubMed  Google Scholar 

  161. Galluzzi L, Vitale I, Abrams JM et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–120.

    Article  CAS  PubMed  Google Scholar 

  162. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.

    Article  CAS  PubMed  Google Scholar 

  163. Rothe J, Lesslauer W, Lotscher H et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature. 1993;364:798–802.

    Article  CAS  PubMed  Google Scholar 

  164. Pfeffer K, Matsuyama T, Kundig TM, et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993;73:457–467.

  165. Stoelcker B, Ruhland B, Hehlgans T et al. Tumor necrosis factor induces tumor necrosis via tumor necrosis factor receptor type 1-expressing endothelial cells of the tumor vasculature. Am J Pathol. 2000;156:1171–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Grell M, Douni E, Wajant H et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 1995;83:793–802.

    Article  CAS  PubMed  Google Scholar 

  167. Pinckard JK, Sheehan KC, Arthur CD, Schreiber RD. Constitutive shedding of both p55 and p75 murine TNF receptors in vivo. J Immunol. 1997;158:3869–3873.

    CAS  PubMed  Google Scholar 

  168. Xanthoulea S, Pasparakis M, Kousteni S et al. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J Exp Med. 2004;200:367–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kim EY, Teh HS. TNF type 2 receptor (p75) lowers the threshold of T cell activation. J Immunol. 2001;167:6812–6820.

    Article  CAS  PubMed  Google Scholar 

  170. Kim EY, Priatel JJ, Teh SJ, Teh HS. TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. J Immunol. 2006;176:1026–1035.

    Article  CAS  PubMed  Google Scholar 

  171. Chatzidakis I, Fousteri G, Tsoukatou D, Kollias G, Mamalaki C. An essential role for TNF in modulating thresholds for survival, activation, and tolerance of CD8+ T cells. J Immunol. 2007;178:6735–6745.

    Article  CAS  PubMed  Google Scholar 

  172. Chatzidakis I, Mamalaki C. T cells as sources and targets of TNF: implications for immunity and autoimmunity. Curr Dir Autoimmun. 2010;11:105–118.

    Article  CAS  PubMed  Google Scholar 

  173. Chen X, Baumel M, Mannel DN, Howard OM, Oppenheim JJ. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J Immunol. 2007;179:154–161.

    Article  CAS  PubMed  Google Scholar 

  174. Grinberg-Bleyer Y, Saadoun D, Baeyens A et al. Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J Clin Invest. 2010;120:4558–4568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ehrenstein MR, Evans JG, Singh A et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 2004;200:277–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Valencia X, Stephens G, Goldbach-Mansky R et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood. 2006;108:253–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ma HL, Napierata L, Stedman N et al. Tumor necrosis factor alpha blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells. Arthritis Rheum. 2010;62:430–440.

    Article  CAS  PubMed  Google Scholar 

  178. Wu AJ, Hua H, Munson SH, McDevitt HO. Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U S A. 2002;99:12287–12292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mougiakakos D, Johansson CC, Jitschin R, Bottcher M, Kiessling R. Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood. 2011;117:857–861.

    Article  CAS  PubMed  Google Scholar 

  180. Czaja AJ. Nature and implications of oxidative and nitrosative stresses in autoimmune hepatitis. Dig Dis Sci. 2016;61:2784–2803.

    Article  CAS  PubMed  Google Scholar 

  181. Kleijwegt FS, Laban S, Duinkerken G et al. Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells. J Immunol. 2010;185:1412–1418.

    Article  CAS  PubMed  Google Scholar 

  182. Aggarwal BB, Shishodia S, Takada Y, et al. TNF blockade: an inflammatory issue. Ernst Schering Res Found Workshop. 2006:161–186.

  183. Van Hauwermeiren F, Vandenbroucke RE, Libert C. Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1. Cytokine Growth Factor Rev. 2011;22:311–319.

    Article  PubMed  Google Scholar 

  184. Maggiore G, De Benedetti F, Massa M, Pignatti P, Martini A. Circulating levels of interleukin-6, interleukin-8, and tumor necrosis factor-alpha in children with autoimmune hepatitis. J Pediatr Gastroenterol Nutr. 1995;20:23–27.

    Article  CAS  PubMed  Google Scholar 

  185. Thomas-Dupont P, Remes-Troche JM, Izaguirre-Hernandez IY et al. Elevated circulating levels of IL-21 and IL-22 define a cytokine signature profile in type 2 autoimmune hepatitis patients. Ann Hepatol. 2016;15:550–558.

    CAS  PubMed  Google Scholar 

  186. Akberova D, Kiassov AP, Abdulganieva D. Serum cytokine levels and their relation to clinical features in patients with autoimmune liver diseases. J Immunol Res. 2017;2017:9829436.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Liang M, Liwen Z, Yun Z, Yanbo D, Jianping C. Serum Levels of IL-33 and correlation with IL-4, IL-17A, and hypergammaglobulinemia in patients with autoimmune hepatitis. Mediators Inflamm. 2018;2018:7964654.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Chaouali M, Ben Azaiez M, Tezeghdenti A et al. High levels of proinflammatory cytokines IL-6, IL-8, TNF-Alpha, IL-23, and IFN- in Tunisian patients with type 1 autoimmune hepatitis. Eur Cytokine Netw. 2020. https://doi.org/10.1684/ecn.2020.0450.

    Article  PubMed  Google Scholar 

  189. Iwamoto S, Kido M, Aoki N et al. TNF-alpha is essential in the induction of fatal autoimmune hepatitis in mice through upregulation of hepatic CCL20 expression. Clin Immunol. 2013;146:15–25.

    Article  CAS  PubMed  Google Scholar 

  190. Czaja AJ, Cookson S, Constantini PK et al. Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis. Gastroenterology. 1999;117:645–652.

    Article  CAS  PubMed  Google Scholar 

  191. Cookson S, Constantini PK, Clare M et al. Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis. Hepatology. 1999;30:851–856.

    Article  CAS  PubMed  Google Scholar 

  192. Bathgate AJ, Pravica V, Perrey C, Hayes PC, Hutchinson IV. Polymorphisms in tumour necrosis factor alpha, interleukin-10 and transforming growth factor beta1 genes and end-stage liver disease. Eur J Gastroenterol Hepatol. 2000;12:1329–1333.

    Article  CAS  PubMed  Google Scholar 

  193. Li S, Huang X, Zhong H et al. Tumour necrosis factor alpha (TNF-alpha) genetic polymorphisms and the risk of autoimmune liver disease: a meta-analysis. J Genet. 2013;92:617–628.

    Article  CAS  PubMed  Google Scholar 

  194. Qin B, Li J, Liang Y, Yang Z, Zhong R. The association between cytotoxic T lymphocyte associated antigen-4, Fas, tumour necrosis factor-alpha gene polymorphisms and autoimmune hepatitis: a meta-analysis. Dig Liver Dis. 2014;46:541–548.

    Article  CAS  PubMed  Google Scholar 

  195. Chaouali M, Azaiez MB, Tezeghdenti A et al. Association of TNF-alpha-308 polymorphism with susceptibility to autoimmune hepatitis in Tunisians. Biochem Genet. 2018;56:650–662.

    Article  CAS  PubMed  Google Scholar 

  196. Motawi TK, El-Maraghy SA, Sharaf SA, Said SE. Association of CARD10 rs6000782 and TNF rs1799724 variants with paediatric-onset autoimmune hepatitis. J Adv Res. 2019;15:103–110.

    Article  CAS  PubMed  Google Scholar 

  197. Zachou K, Rigopoulou EI, Tsikrikoni A et al. Autoimmune hepatitis type 1 and primary biliary cirrhosis have distinct bone marrow cytokine production. J Autoimmun. 2005;25:283–288.

    Article  CAS  PubMed  Google Scholar 

  198. Bittencourt PL, Palacios SA, Cancado EL et al. Autoimmune hepatitis in Brazilian patients is not linked to tumor necrosis factor alpha polymorphisms at position -308. J Hepatol. 2001;35:24–28.

    Article  CAS  PubMed  Google Scholar 

  199. Fan LY, Zhong RQ, Tu XQ, et al. [Genetic association of tumor necrosis factor (TNF)-alpha polymorphisms with primary biliary cirrhosis and autoimmune liver diseases in a Chinese population]. Zhonghua Gan Zang Bing Za Zhi. 2004;12:160–162.

  200. de Boer YS, van Gerven NM, Zwiers A et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology. 2014;147:443–452.

    Article  PubMed  Google Scholar 

  201. Mendoza-Carrera F, Gastelum-Meza MA, Ramirez-Garcia J et al. No association of HLA-DRB1 and TNF alleles in Mexican patients with autoimmune hepatitis. Genes Immun. 2019;20:678–683.

    Article  CAS  PubMed  Google Scholar 

  202. Abbas AK, Benoist C, Bluestone JA et al. Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol. 2013;14:307–308.

    Article  CAS  PubMed  Google Scholar 

  203. Mitoma H, Horiuchi T, Tsukamoto H et al. Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum. 2008;58:1248–1257.

    Article  CAS  PubMed  Google Scholar 

  204. Scallon B, Cai A, Solowski N et al. Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther. 2002;301:418–426.

    Article  CAS  PubMed  Google Scholar 

  205. Mitoma H, Horiuchi T, Tsukamoto H, Ueda N. Molecular mechanisms of action of anti-TNF-alpha agents - Comparison among therapeutic TNF-alpha antagonists. Cytokine. 2018;101:56–63.

    Article  CAS  PubMed  Google Scholar 

  206. Agnholt J, Kaltoft K. Infliximab downregulates interferon-gamma production in activated gut T-lymphocytes from patients with Crohn’s disease. Cytokine. 2001;15:212–222.

    Article  CAS  PubMed  Google Scholar 

  207. Agnholt J, Kelsen J, Brandsborg B, Jakobsen NO, Dahlerup JF. Increased production of granulocyte-macrophage colony-stimulating factor in Crohn’s disease–a possible target for infliximab treatment. Eur J Gastroenterol Hepatol. 2004;16:649–655.

    Article  CAS  PubMed  Google Scholar 

  208. Kirman I, Whelan RL, Nielsen OH. Infliximab: mechanism of action beyond TNF-alpha neutralization in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2004;16:639–641.

    Article  CAS  PubMed  Google Scholar 

  209. Arijs I, De Hertogh G, Machiels K et al. Mucosal gene expression of cell adhesion molecules, chemokines, and chemokine receptors in patients with inflammatory bowel disease before and after infliximab treatment. Am J Gastroenterol. 2011;106:748–761.

    Article  CAS  PubMed  Google Scholar 

  210. Di Sabatino A, Pender SL, Jackson CL et al. Functional modulation of Crohn’s disease myofibroblasts by anti-tumor necrosis factor antibodies. Gastroenterology. 2007;133:137–149.

    Article  PubMed  Google Scholar 

  211. Guo Y, Lu N, Bai A. Clinical use and mechanisms of infliximab treatment on inflammatory bowel disease: a recent update. Biomed Res Int. 2013;2013:581631.

  212. ten Hove T, van Montfrans C, Peppelenbosch MP, van Deventer SJ. Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut. 2002;50:206–211.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Rajanayagam J, Lewindon PJ. Infliximab as rescue therapy in paediatric autoimmune hepatitis. J Hepatol. 2013;59:908–909.

    Article  CAS  PubMed  Google Scholar 

  214. Bongartz T, Sutton AJ, Sweeting MJ et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 2006;295:2275–2285.

    Article  CAS  PubMed  Google Scholar 

  215. Furst DE. The risk of infections with biologic therapies for rheumatoid arthritis. Semin Arthritis Rheum. 2010;39:327–346.

    Article  CAS  PubMed  Google Scholar 

  216. Murdaca G, Spano F, Contatore M et al. Infection risk associated with anti-TNF-alpha agents: a review. Expert Opin Drug Saf. 2015;14:571–582.

    Article  CAS  PubMed  Google Scholar 

  217. Downey C. Serious infection during etanercept, infliximab and adalimumab therapy for rheumatoid arthritis: A literature review. Int J Rheum Dis. 2016;19:536–550.

    Article  PubMed  Google Scholar 

  218. Liao H, Zhong Z, Liu Z, Zou X. Comparison of the risk of infections in different anti-TNF agents: a meta-analysis. Int J Rheum Dis. 2017;20:161–168.

    Article  CAS  PubMed  Google Scholar 

  219. Fernandez-Ruiz M, Aguado JM. Risk of infection associated with anti-TNF-alpha therapy. Expert Rev Anti Infect Ther. 2018;16:939–956.

    Article  CAS  PubMed  Google Scholar 

  220. Murdaca G, Negrini S, Pellecchio M et al. Update upon the infection risk in patients receiving TNF alpha inhibitors. Expert Opin Drug Saf. 2019;18:219–229.

    Article  CAS  PubMed  Google Scholar 

  221. Bruns H, Meinken C, Schauenberg P et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest. 2009;119:1167–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Dommasch ED, Abuabara K, Shin DB et al. The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a systematic review and meta-analysis of randomized controlled trials. J Am Acad Dermatol. 2011;64:1035–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lichtenstein GR, Rutgeerts P, Sandborn WJ et al. A pooled analysis of infections, malignancy, and mortality in infliximab- and immunomodulator-treated adult patients with inflammatory bowel disease. Am J Gastroenterol. 2012;107:1051–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dulai PS, Thompson KD, Blunt HB, Dubinsky MC, Siegel CA. Risks of serious infection or lymphoma with anti-tumor necrosis factor therapy for pediatric inflammatory bowel disease: a systematic review. Clin Gastroenterol Hepatol. 2014;12:1443–1451.

    Article  PubMed  Google Scholar 

  225. Bjornsson ES, Gunnarsson BI, Grondal G et al. Risk of drug-induced liver injury from tumor necrosis factor antagonists. Clin Gastroenterol Hepatol. 2015;13:602–608.

    Article  CAS  PubMed  Google Scholar 

  226. French JB, Bonacini M, Ghabril M, Foureau D, Bonkovsky HL. Hepatotoxicity associated with the use of anti-TNF-alpha agents. Drug Saf. 2016;39:199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Averbukh LD, Wu GY. Role of biologics in the development of autoimmune hepatitis: A review. J Clin Transl Hepatol. 2018;6:402–409.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. 2010;2:256–265.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Zheng L, Fisher G, Miller RE et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature. 1995;377:348–351.

    Article  CAS  PubMed  Google Scholar 

  230. Via CS, Shustov A, Rus V et al. In vivo neutralization of TNF-alpha promotes humoral autoimmunity by preventing the induction of CTL. J Immunol. 2001;167:6821–6826.

    Article  CAS  PubMed  Google Scholar 

  231. Eriksson C, Engstrand S, Sundqvist KG, Rantapaa-Dahlqvist S. Autoantibody formation in patients with rheumatoid arthritis treated with anti-TNF alpha. Ann Rheum Dis. 2005;64:403–407.

    Article  CAS  PubMed  Google Scholar 

  232. Gessner JE, Heiken H, Tamm A, Schmidt RE. The IgG Fc receptor family. Ann Hematol. 1998;76:231–248.

    Article  CAS  PubMed  Google Scholar 

  233. Siberil S, Dutertre CA, Boix C et al. Molecular aspects of human FcgammaR interactions with IgG: functional and therapeutic consequences. Immunol Lett. 2006;106:111–118.

    Article  CAS  PubMed  Google Scholar 

  234. Han PD, Cohen RD. Managing immunogenic responses to infliximab: treatment implications for patients with Crohn’s disease. Drugs. 2004;64:1767–1777.

    Article  CAS  PubMed  Google Scholar 

  235. Marques M, Magro F, Cardoso H et al. Infliximab-induced lupus-like syndrome associated with autoimmune hepatitis. Inflamm Bowel Dis. 2008;14:723–725.

    Article  CAS  PubMed  Google Scholar 

  236. Goujon C, Dahel K, Berard F et al. Autoimmune hepatitis in two psoriasis patients treated with inflixmab. J Am Acad Dermatol. 2010;63:e43-44.

    Article  PubMed  Google Scholar 

  237. Poulin Y, Therien G. Drug-induced hepatitis and lupus during infliximab treatment for psoriasis: case report and literature review. J Cutan Med Surg. 2010;14:100–104.

    Article  PubMed  Google Scholar 

  238. Cravo M, Silva R, Serrano M. Autoimmune hepatitis induced by infliximab in a patient with Crohn’s disease with no relapse after switching to adalimumab. Biodrugs. 2010;24:25–27.

    Article  PubMed  Google Scholar 

  239. Goldfeld DA, Verna EC, Lefkowitch J, Swaminath A. Infliximab-induced autoimmune hepatitis with successful switch to adalimumab in a patient with Crohn’s disease: the index case. Dig Dis Sci. 2011;56:3386–3388.

    Article  PubMed  Google Scholar 

  240. Doyle A, Forbes G, Kontorinis N. Autoimmune hepatitis during infliximab therapy for Crohn’s disease: a case report. J Crohns Colitis. 2011;5:253–255.

    Article  PubMed  Google Scholar 

  241. Subramaniam K, Chitturi S, Brown M, Pavli P. Infliximab-induced autoimmune hepatitis in Crohn’s disease treated with budesonide and mycophenolate. Inflamm Bowel Dis. 2011;17:E149-150.

    Article  CAS  PubMed  Google Scholar 

  242. van Casteren-Messidoro C, Prins G, van Tilburg A et al. Autoimmune hepatitis following treatment with infliximab for inflammatory bowel disease. J Crohns Colitis. 2012;6:630–631.

    Article  PubMed  Google Scholar 

  243. Dang LJ, Lubel JS, Gunatheesan S, Hosking P, Su J. Drug-induced lupus and autoimmune hepatitis secondary to infliximab for psoriasis. Australas J Dermatol. 2014;55:75–79.

    Article  PubMed  Google Scholar 

  244. Rodrigues S, Lopes S, Magro F et al. Autoimmune hepatitis and anti-tumor necrosis factor alpha therapy: A single center report of 8 cases. World J Gastroenterol. 2015;21:7584–7588.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Wong F, Al Ibrahim B, Walsh J, Qumosani K. Infliximab-induced autoimmune hepatitis requiring liver transplantation. Clin Case Rep. 2019;7:2135–2139.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Jenkins A, Austin A, Hughes K, Sadowski B, Torres D. Infliximab-induced autoimmune hepatitis. BMJ Case Rep. 2021;14.

  247. Mustafa Alikhan M, Mansoor E, Satyavada S, et al. Infliximab-Induced acute liver failure in a patient with Crohn's disease requiring orthotopic liver transplantation. ACG Case Rep J. 2021;8:e00586.

  248. Czaja AJ. Drug-induced autoimmune-like hepatitis. Dig Dis Sci. 2011;56:958–976.

    Article  CAS  PubMed  Google Scholar 

  249. Bonovas S, Fiorino G, Allocca M et al. Biologic therapies and risk of Infection and malignancy in patients with inflammatory bowel disease: a systematic review and network meta-analysis. Clin Gastroenterol Hepatol. 2016;14:1385–1397.

    Article  PubMed  Google Scholar 

  250. Siegel CA, Marden SM, Persing SM, Larson RJ, Sands BE. Risk of lymphoma associated with combination anti-tumor necrosis factor and immunomodulator therapy for the treatment of Crohn’s disease: a meta-analysis. Clin Gastroenterol Hepatol. 2009;7:874–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Hyams JS, Dubinsky MC, Baldassano RN et al. Infliximab Is not associated with increased risk of malignancy or hemophagocytic lymphohistiocytosis in pediatric patients with inflammatory bowel disease. Gastroenterology. 2017;152:1901–1914.

    Article  PubMed  Google Scholar 

  252. Wolfe F, Michaud K. The effect of methotrexate and anti-tumor necrosis factor therapy on the risk of lymphoma in rheumatoid arthritis in 19,562 patients during 89,710 person-years of observation. Arthritis Rheum. 2007;56:1433–1439.

    Article  CAS  PubMed  Google Scholar 

  253. Alvisi P, Dipasquale V, Barabino A et al. Infections and malignancies risks related to TNF-alpha-blocking agents in pediatric inflammatory bowel diseases. Expert Rev Gastroenterol Hepatol. 2019;13:957–961.

    Article  CAS  PubMed  Google Scholar 

  254. Czaja AJ. Hepatocellular cancer and other malignancies in autoimmune hepatitis. Dig Dis Sci. 2013;58:1459–1476.

    Article  CAS  PubMed  Google Scholar 

  255. Arenas-Ramirez N, Woytschak J, Boyman O. Interleukin-2: biology, design and application. Trends Immunol. 2015;36:763–777.

    Article  CAS  PubMed  Google Scholar 

  256. Rozwarski DA, Gronenborn AM, Clore GM et al. Structural comparisons among the short-chain helical cytokines. Structure. 1994;2:159–173.

    Article  CAS  PubMed  Google Scholar 

  257. Reche PA. The tertiary structure of γc cytokines dictates receptor sharing. Cytokine. 2019;116:161–168.

    Article  CAS  PubMed  Google Scholar 

  258. Devos R, Plaetinck G, Cheroutre H, et al. Molecular cloning of human interleukin 2 cDNA and its expression in E. coli. Nucleic Acids Res. 1983;11:4307–4323.

  259. Roifman CM, Mills GB, Chu M, Gelfand EW. Functional comparison of recombinant interleukin 2 (IL-2) with IL-2-containing preparations derived from cultured cells. Cell Immunol. 1985;95:146–156.

    Article  CAS  PubMed  Google Scholar 

  260. Rosenzwajg M, Lorenzon R, Cacoub P et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis. 2019;78:209–217.

    Article  CAS  PubMed  Google Scholar 

  261. Hartemann A, Bensimon G, Payan CA et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1:295–305.

    Article  CAS  PubMed  Google Scholar 

  262. Rosenzwajg M, Churlaud G, Mallone R et al. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun. 2015;58:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Koreth J, Matsuoka K, Kim HT et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med. 2011;365:2055–2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. He J, Zhang X, Wei Y et al. Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus. Nat Med. 2016;22:991–993.

    Article  CAS  PubMed  Google Scholar 

  265. von Spee-Mayer C, Siegert E, Abdirama D et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2016;75:1407–1415.

    Article  Google Scholar 

  266. Castela E, Le Duff F, Butori C et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150:748–751.

    Article  CAS  PubMed  Google Scholar 

  267. Saadoun D, Rosenzwajg M, Joly F et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011;365:2067–2077.

    Article  CAS  PubMed  Google Scholar 

  268. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006;311:1924–1927.

    Article  CAS  PubMed  Google Scholar 

  269. Boyman O, Surh CD, Sprent J. Potential use of IL-2/anti-IL-2 antibody immune complexes for the treatment of cancer and autoimmune disease. Expert Opin Biol Ther. 2006;6:1323–1331.

    Article  CAS  PubMed  Google Scholar 

  270. Spangler JB, Tomala J, Luca VC et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity. 2015;42:815–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Trotta E, Bessette PH, Silveria SL et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat Med. 2018;24:1005–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Owen DL, Mahmud SA, Vang KB et al. Identification of cellular sources of IL-2 needed for regulatory T cell development and homeostasis. J Immunol. 2018;200:3926–3933.

    Article  CAS  PubMed  Google Scholar 

  273. Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol. 2004;172:3983–3988.

    Article  CAS  PubMed  Google Scholar 

  274. Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004;4:665–674.

    Article  CAS  PubMed  Google Scholar 

  275. Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: a current overview. Cell. 1993;73:5–8.

    Article  CAS  PubMed  Google Scholar 

  276. Nelson BH, Willerford DM. Biology of the interleukin-2 receptor. Adv Immunol. 1998;70:1–81.

    Article  CAS  PubMed  Google Scholar 

  277. Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33:153–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Antov A, Yang L, Vig M, Baltimore D, Van Parijs L. Essential role for STAT5 signaling in CD25+CD4+ regulatory T cell homeostasis and the maintenance of self-tolerance. J Immunol. 2003;171:3435–3441.

    Article  CAS  PubMed  Google Scholar 

  279. Feng Y, Arvey A, Chinen T et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell. 2014;158:749–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Chinen T, Kannan AK, Levine AG et al. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol. 2016;17:1322–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Tsuji-Takayama K, Suzuki M, Yamamoto M et al. The production of IL-10 by human regulatory T cells is enhanced by IL-2 through a STAT5-responsive intronic enhancer in the IL-10 locus. J Immunol. 2008;181:3897–3905.

    Article  CAS  PubMed  Google Scholar 

  282. Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity. 1998;8:615–623.

    Article  CAS  PubMed  Google Scholar 

  283. Dai Z, Arakelov A, Wagener M, Konieczny BT, Lakkis FG. The role of the common cytokine receptor gamma-chain in regulating IL-2-dependent, activation-induced CD8+ T cell death. J Immunol. 1999;163:3131–3137.

    CAS  PubMed  Google Scholar 

  284. Zheng L, Trageser CL, Willerford DM, Lenardo MJ. T cell growth cytokines cause the superinduction of molecules mediating antigen-induced T lymphocyte death. J Immunol. 1998;160:763–769.

    CAS  PubMed  Google Scholar 

  285. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12:180–190.

    Article  CAS  PubMed  Google Scholar 

  286. Boyman O, Cho JH, Sprent J. The role of interleukin-2 in memory CD8 cell differentiation. Adv Exp Med Biol. 2010;684:28–41.

    Article  CAS  PubMed  Google Scholar 

  287. Carter L, Fouser LA, Jussif J et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol. 2002;32:634–643.

    Article  CAS  PubMed  Google Scholar 

  288. Czaja AJ. Immune inhibitory proteins and their pathogenic and therapeutic implications in autoimmunity and autoimmune hepatitis. Autoimmunity. 2019;52:144–160.

    Article  CAS  PubMed  Google Scholar 

  289. Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–2116.

    Article  CAS  PubMed  Google Scholar 

  290. Smylie MG. Use of immuno-oncology in melanoma. Curr Oncol. 2020;27:S51–S58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Liberal R, Grant CR, Holder BS et al. In autoimmune hepatitis type 1 or the autoimmune hepatitis-sclerosing cholangitis variant defective regulatory T-cell responsiveness to IL-2 results in low IL-10 production and impaired suppression. Hepatology. 2015;62:863–875.

    Article  CAS  PubMed  Google Scholar 

  292. Saxena S, Nouri-Aria KT, Anderson MG, Eddleston AL, Williams R. Interleukin 2 activity in chronic liver disease and the effect of in vitro alpha-interferon. Clin Exp Immunol. 1986;63:541–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  293. al-Wabel A, al-Janadi M, Raziuddin S. Cytokine profile of viral and autoimmune chronic active hepatitis. J Allergy Clin Immunol. 1993;92:902–908.

  294. Czaja AJ, Sievers C, Zein NN. Nature and behavior of serum cytokines in type 1 autoimmune hepatitis. Dig Dis Sci. 2000;45:1028–1035.

    Article  CAS  PubMed  Google Scholar 

  295. Diestelhorst J, Junge N, Jonigk D et al. Baseline IL-2 and the AIH score can predict the response to standard therapy in paediatric autoimmune hepatitis. Sci Rep. 2018;8:419.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Yousefi A, Mahmoudi E, Baradaran Noveiry B et al. Autoimmune hepatitis association with single nucleotide polymorphism of interleukin-2, but not interferon-gamma. Clin Res Hepatol Gastroenterol. 2018;42:134–138.

    Article  CAS  PubMed  Google Scholar 

  297. Diestelhorst J, Junge N, Schlue J, et al. Pediatric autoimmune hepatitis shows a disproportionate decline of regulatory T cells in the liver and of IL-2 in the blood of patients undergoing therapy. PLoS One. 2017;12:e0181107.

  298. Taubert R, Hardtke-Wolenski M, Noyan F et al. Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J Hepatol. 2014;61:1106–1114.

    Article  CAS  PubMed  Google Scholar 

  299. Longhi MS, Ma Y, Mitry RR et al. Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun. 2005;25:63–71.

    Article  CAS  PubMed  Google Scholar 

  300. Longhi MS, Hussain MJ, Mitry RR et al. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol. 2006;176:4484–4491.

    Article  CAS  PubMed  Google Scholar 

  301. Peiseler M, Sebode M, Franke B et al. FOXP3+ regulatory T cells in autoimmune hepatitis are fully functional and not reduced in frequency. J Hepatol. 2012;57:125–132.

    Article  CAS  PubMed  Google Scholar 

  302. Grant CR, Liberal R, Mieli-Vergani G, Vergani D, Longhi MS. Regulatory T-cells in autoimmune diseases: challenges, controversies and–yet–unanswered questions. Autoimmun Rev. 2015;14:105–116.

    Article  CAS  PubMed  Google Scholar 

  303. Liberal R, Grant CR, Holder BS et al. The impaired immune regulation of autoimmune hepatitis is linked to a defective galectin-9/tim-3 pathway. Hepatology. 2012;56:677–686.

    Article  CAS  PubMed  Google Scholar 

  304. Schmidt B. Proof of Principle studies. Epilepsy Res. 2006;68:48–52.

    Article  PubMed  Google Scholar 

  305. Yang JC, Topalian SL, Parkinson D et al. Randomized comparison of high-dose and low-dose intravenous interleukin-2 for the therapy of metastatic renal cell carcinoma: an interim report. J Clin Oncol. 1994;12:1572–1576.

    Article  CAS  PubMed  Google Scholar 

  306. Shulman KL, Stadler WM, Vogelzang NJ. High-dose continuous intravenous infusion of interleukin-2 therapy for metastatic renal cell carcinoma: the University of Chicago experience. Urology. 1996;47:194–197.

    Article  CAS  PubMed  Google Scholar 

  307. Dutcher JP, Schwartzentruber DJ, Kaufman HL et al. High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014. J Immunother Cancer. 2014;2:26.

    Article  PubMed  PubMed Central  Google Scholar 

  308. Siddall E, Khatri M, Radhakrishnan J. Capillary leak syndrome: etiologies, pathophysiology, and management. Kidney Int. 2017;92:37–46.

    Article  PubMed  Google Scholar 

  309. Jeong GH, Lee KH, Lee IR et al. Incidence of capillary leak syndrome as an adverse effect of drugs in cancer patients: a systematic review and meta-analysis. J Clin Med. 2019;8:143.

    Article  CAS  PubMed Central  Google Scholar 

  310. Parameswaran R, Lim M, Fei F et al. Effector-mediated eradication of precursor B acute lymphoblastic leukemia with a novel Fc-engineered monoclonal antibody targeting the BAFF-R. Mol Cancer Ther. 2014;13:1567–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Dorner T, Posch MG, Li Y et al. Treatment of primary Sjogren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann Rheum Dis. 2019;78:641–647.

    Article  PubMed  Google Scholar 

  312. McWilliams EM, Lucas CR, Chen T et al. Anti-BAFF-R antibody VAY-736 demonstrates promising preclinical activity in CLL and enhances effectiveness of ibrutinib. Blood Adv. 2019;3:447–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Diekhoff T, Fischer T, Schefer Q et al. Ianalumab (VAY736) in primary Sjogren’s syndrome: assessing disease activity using multi-modal ultrasound. Clin Exp Rheumatol. 2020;38:228–236.

    PubMed  Google Scholar 

  314. Baker KP, Edwards BM, Main SH et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 2003;48:3253–3265.

    Article  CAS  PubMed  Google Scholar 

  315. Samy E, Wax S, Huard B, Hess H, Schneider P. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol. 2017;36:3–19.

    Article  CAS  PubMed  Google Scholar 

  316. Moore PA, Belvedere O, Orr A et al. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science. 1999;285:260–263.

    Article  CAS  PubMed  Google Scholar 

  317. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.

    Article  CAS  PubMed  Google Scholar 

  318. Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci. 2002;27:19–26.

    Article  CAS  PubMed  Google Scholar 

  319. Huard B, Arlettaz L, Ambrose C et al. BAFF production by antigen-presenting cells provides T cell co-stimulation. Int Immunol. 2004;16:467–475.

    Article  CAS  PubMed  Google Scholar 

  320. Nardelli B, Belvedere O, Roschke V et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood. 2001;97:198–204.

    Article  CAS  PubMed  Google Scholar 

  321. Scapini P, Nardelli B, Nadali G et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med. 2003;197:297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Scapini P, Carletto A, Nardelli B et al. Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood. 2005;105:830–837.

    Article  CAS  PubMed  Google Scholar 

  323. Hsu BL, Harless SM, Lindsley RC, Hilbert DM, Cancro MP. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol. 2002;168:5993–5996.

    Article  CAS  PubMed  Google Scholar 

  324. Thompson JS, Bixler SA, Qian F et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001;293:2108–2111.

    Article  CAS  PubMed  Google Scholar 

  325. Benson MJ, Dillon SR, Castigli E et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol. 2008;180:3655–3659.

    Article  CAS  PubMed  Google Scholar 

  326. Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9:491–502.

    Article  CAS  PubMed  Google Scholar 

  327. Kayagaki N, Yan M, Seshasayee D et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity. 2002;17:515–524.

    Article  CAS  PubMed  Google Scholar 

  328. Claudio E, Brown K, Park S, Wang H, Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol. 2002;3:958–965.

    Article  CAS  PubMed  Google Scholar 

  329. Wu Y, Bressette D, Carrell JA et al. Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS. J Biol Chem. 2000;275:35478–35485.

    Article  CAS  PubMed  Google Scholar 

  330. Marsters SA, Yan M, Pitti RM et al. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr Biol. 2000;10:785–788.

    Article  CAS  PubMed  Google Scholar 

  331. Gross JA, Johnston J, Mudri S et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 2000;404:995–999.

    Article  CAS  PubMed  Google Scholar 

  332. Darce JR, Arendt BK, Wu X, Jelinek DF. Regulated expression of BAFF-binding receptors during human B cell differentiation. J Immunol. 2007;179:7276–7286.

    Article  CAS  PubMed  Google Scholar 

  333. Figgett WA, Fairfax K, Vincent FB et al. The TACI receptor regulates T-cell-independent marginal zone B cell responses through innate activation-induced cell death. Immunity. 2013;39:573–583.

    Article  CAS  PubMed  Google Scholar 

  334. O’Connor BP, Raman VS, Erickson LD et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med. 2004;199:91–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Peperzak V, Vikstrom I, Walker J et al. Mcl-1 is essential for the survival of plasma cells. Nat Immunol. 2013;14:290–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Schiemann B, Gommerman JL, Vora K et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293:2111–2114.

    Article  CAS  PubMed  Google Scholar 

  337. Avery DT, Kalled SL, Ellyard JI et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest. 2003;112:286–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Rauch M, Tussiwand R, Bosco N, Rolink AG. Crucial role for BAFF-BAFF-R signaling in the survival and maintenance of mature B cells. PLoS One. 2009;4:e5456.

  339. Do RK, Hatada E, Lee H et al. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med. 2000;192:953–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002;2:465–475.

    Article  CAS  PubMed  Google Scholar 

  341. Xu LG, Wu M, Hu J, Zhai Z, Shu HB. Identification of downstream genes up-regulated by the tumor necrosis factor family member TALL-1. J Leukoc Biol. 2002;72:410–416.

    Article  CAS  PubMed  Google Scholar 

  342. Xu LG, Shu HB. TNFR-associated factor-3 is associated with BAFF-R and negatively regulates BAFF-R-mediated NF-kappa B activation and IL-10 production. J Immunol. 2002;169:6883–6889.

    Article  CAS  PubMed  Google Scholar 

  343. Furie R, Stohl W, Ginzler EM et al. Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther. 2008;10:R109.

    Article  PubMed  PubMed Central  Google Scholar 

  344. Wallace DJ, Stohl W, Furie RA et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 2009;61:1168–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Navarra SV, Guzman RM, Gallacher AE et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377:721–731.

    Article  CAS  PubMed  Google Scholar 

  346. Furie R, Petri M, Zamani O et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63:3918–3930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Wise LM, Stohl W. The safety of belimumab for the treatment of systemic lupus erythematosus. Expert Opin Drug Saf. 2019;18:1133–1144.

    Article  CAS  PubMed  Google Scholar 

  348. Chatham W, Chadha A, Fettiplace J et al. A randomized, open-label study to investigate the effect of belimumab on pneumococcal vaccination in patients with active, autoantibody-positive systemic lupus erythematosus. Lupus. 2017;26:1483–1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol. 2019;25:6579–6606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Mascelli MA, Zhou H, Sweet R et al. Molecular, biologic, and pharmacokinetic properties of monoclonal antibodies: impact of these parameters on early clinical development. J Clin Pharmacol. 2007;47:553–565.

    Article  CAS  PubMed  Google Scholar 

  351. Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov. 2007;6:349–356.

    Article  CAS  PubMed  Google Scholar 

  352. Rau R. Adalimumab (a fully human anti-tumour necrosis factor alpha monoclonal antibody) in the treatment of active rheumatoid arthritis: the initial results of five trials. Ann Rheum Dis. 2002;61 Suppl 2:ii70–73.

  353. Shealy DJ, Cai A, Staquet K et al. Characterization of golimumab, a human monoclonal antibody specific for human tumor necrosis factor alpha. MAbs. 2010;2:428–439.

    Article  PubMed  Google Scholar 

  354. Clark M. Antibody humanization: a case of the “Emperor’s new clothes”? Immunol Today. 2000;21:397–402.

    Article  CAS  PubMed  Google Scholar 

  355. Kamimura D, Sawa Y, Sato M et al. IL-2 in vivo activities and antitumor efficacy enhanced by an anti-IL-2 mAb. J Immunol. 2006;177:306–314.

    Article  CAS  PubMed  Google Scholar 

  356. Kamimura D, Bevan MJ. Naive CD8+ T cells differentiate into protective memory-like cells after IL-2 anti IL-2 complex treatment in vivo. J Exp Med. 2007;204:1803–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–1164.

  358. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005;6:1142–1151.

    Article  CAS  PubMed  Google Scholar 

  359. Finkelman FD, Madden KB, Morris SC, et al. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J Immunol. 1993;151:1235–1244.

  360. Letourneau S, van Leeuwen EM, Krieg C et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc Natl Acad Sci U S A. 2010;107:2171–2176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Hahne M, Kataoka T, Schroter M et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J Exp Med. 1998;188:1185–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Stein JV, Lopez-Fraga M, Elustondo FA et al. APRIL modulates B and T cell immunity. J Clin Invest. 2002;109:1587–1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Yang M, Hase H, Legarda-Addison D et al. B cell maturation antigen, the receptor for a proliferation-inducing ligand and B cell-activating factor of the TNF family, induces antigen presentation in B cells. J Immunol. 2005;175:2814–2824.

    Article  CAS  PubMed  Google Scholar 

  364. Mackay F, Schneider P, Rennert P, Browning J. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–264.

    Article  CAS  PubMed  Google Scholar 

  365. Ingold K, Zumsteg A, Tardivel A et al. Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med. 2005;201:1375–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Belnoue E, Pihlgren M, McGaha TL et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood. 2008;111:2755–2764.

    Article  CAS  PubMed  Google Scholar 

  367. Bossen C, Cachero TG, Tardivel A et al. TACI, unlike BAFF-R, is solely activated by oligomeric BAFF and APRIL to support survival of activated B cells and plasmablasts. Blood. 2008;111:1004–1012.

    Article  CAS  PubMed  Google Scholar 

  368. Tai YT, Lin L, Xing L et al. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia. 2019;33:426–438.

    Article  CAS  PubMed  Google Scholar 

  369. Koyama T, Tsukamoto H, Miyagi Y et al. Raised serum APRIL levels in patients with systemic lupus erythematosus. Ann Rheum Dis. 2005;64:1065–1067.

    Article  CAS  PubMed  Google Scholar 

  370. Hegazy M, Darwish H, Darweesh H, El-Shehaby A, Emad Y. Raised serum level of APRIL in patients with systemic lupus erythematosus: correlations with disease activity indices. Clin Immunol. 2010;135:118–124.

    Article  CAS  PubMed  Google Scholar 

  371. Huard B, Tran NL, Benkhoucha M, Manzin-Lorenzi C, Santiago-Raber ML. Selective APRIL blockade delays systemic lupus erythematosus in mouse. PLoS One. 2012;7:e31837.

  372. Wang H, Marsters SA, Baker T et al. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat Immunol. 2001;2:632–637.

    Article  CAS  PubMed  Google Scholar 

  373. Pelletier M, Thompson JS, Qian F et al. Comparison of soluble decoy IgG fusion proteins of BAFF-R and BCMA as antagonists for BAFF. J Biol Chem. 2003;278:33127–33133.

    Article  CAS  PubMed  Google Scholar 

  374. Baldo BA. Chimeric fusion proteins used for therapy: indications, mechanisms, and safety. Drug Saf. 2015;38:455–479.

    Article  CAS  PubMed  Google Scholar 

  375. Cogollo E, Silva MA, Isenberg D. Profile of atacicept and its potential in the treatment of systemic lupus erythematosus. Drug Des Devel Ther. 2015;9:1331–1339.

    CAS  PubMed  PubMed Central  Google Scholar 

  376. Haselmayer P, Vigolo M, Nys J, Schneider P, Hess H. A mouse model of systemic lupus erythematosus responds better to soluble TACI than to soluble BAFFR, correlating with depletion of plasma cells. Eur J Immunol. 2017;47:1075–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Czaja AJ. Immune inhibitory properties and therapeutic prospects of transforming growth factor-beta and interleukin 10 in autoimmune hepatitis. Dig Dis Sci. 2021. https://doi.org/10.1007/s10620-021-06968-6.

    Article  PubMed  Google Scholar 

  378. Vavricka SR, Bentele N, Scharl M et al. Systematic assessment of factors influencing preferences of Crohn’s disease patients in selecting an anti-tumor necrosis factor agent (CHOOSE TNF TRIAL). Inflamm Bowel Dis. 2012;18:1523–1530.

    Article  PubMed  Google Scholar 

  379. Solitano V, Vuitton L, Peyrin-Biroulet L, Danese S. The evolution of biologics administration from intravenous to subcutaneous: treatments for inflammatory bowel disease go home. Gastroenterology. 2021;160:2244–2247.

    Article  PubMed  Google Scholar 

  380. Schreiber S, Ben-Horin S, Leszczyszyn J et al. Randomized controlled trial: subcutaneous vs intravenous infliximab CT-P13 maintenance in inflammatory bowel disease. Gastroenterology. 2021;160:2340–2353.

    Article  CAS  PubMed  Google Scholar 

  381. Stoner KL, Harder H, Fallowfield LJ, Jenkins VA. Intravenous versus subcutaneous drug administration. which do patients prefer? A systematic review. Patient. 2014.

  382. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.

    Article  CAS  PubMed  Google Scholar 

  383. Su C, Liu Y, Li R et al. Absorption, distribution, metabolism and excretion of the biomaterials used in nanocarrier drug delivery systems. Adv Drug Deliv Rev. 2019;143:97–114.

    Article  CAS  PubMed  Google Scholar 

  384. Zhu Y, Yu X, Thamphiwatana SD, Zheng Y, Pang Z. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharm Sin B. 2020;10:2054–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. van der Valk ME, Mangen MJ, Leenders M et al. Healthcare costs of inflammatory bowel disease have shifted from hospitalisation and surgery towards anti-TNFalpha therapy: results from the COIN study. Gut. 2014;63:72–79.

    Article  PubMed  Google Scholar 

  386. McCamish M, Woollett G. Worldwide experience with biosimilar development. MAbs. 2011;3:209–217.

    Article  PubMed  PubMed Central  Google Scholar 

  387. Mysler E, Pineda C, Horiuchi T et al. Clinical and regulatory perspectives on biosimilar therapies and intended copies of biologics in rheumatology. Rheumatol Int. 2016;36:613–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Bonek K, Roszkowski L, Massalska M, Maslinski W, Ciechomska M. Biologic drugs for rheumatoid arthritis in the context of biosimilars, genetics, epigenetics and COVID-19 treatment. Cells. 2021;10.

  389. Azevedo VF. Biosimilars require scientifically reliable comparative clinical data. Rev Bras Reumatol. 2013;53:129–131.

    PubMed  Google Scholar 

  390. Jorgensen KK, Olsen IC, Goll GL et al. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): a 52-week, randomised, double-blind, non-inferiority trial. Lancet. 2017;389:2304–2316.

    Article  PubMed  Google Scholar 

  391. Dorner T, Kay J. Biosimilars in rheumatology: current perspectives and lessons learnt. Nat Rev Rheumatol. 2015;11:713–724.

    Article  PubMed  Google Scholar 

  392. Azevedo VF, Galli N, Kleinfelder A, D’Ippolito J, Urbano PC. Etanercept biosimilars. Rheumatol Int. 2015;35:197–209.

    Article  CAS  PubMed  Google Scholar 

  393. Cheifetz AS, Abreu MT, Afif W et al. A comprehensive literature review and expert consensus statement on therapeutic drug monitoring of biologics in inflammatory bowel disease. Am J Gastroenterol. 2021;116:2014–2025.

    Article  PubMed  Google Scholar 

  394. Abdalla MI, Levesque BG. Progress in corticosteroid use in the era of biologics with room for improvement. Am J Gastroenterol. 2021;116:1187–1188.

    Article  PubMed  Google Scholar 

  395. Targownik LE, Bernstein CN, Benchimol EI et al. Trends in corticosteroid use during the era of biologic therapy: a population-based analysis. Am J Gastroenterol. 2021;116:1284–1293.

    Article  PubMed  Google Scholar 

Download references

Funding

This review did not receive financial support from a funding agency or institution

Author information

Authors and Affiliations

Authors

Contributions

AJC, MD researched, designed, and wrote this article. The 4 tables and 3 color figures are original, constructed by Dr. Czaja, and developed solely for this review. The review article is original, current, and comprehensive, and it has not been published previously.

Corresponding author

Correspondence to Albert J. Czaja.

Ethics declarations

Conflict of interest

Albert J. Czaja, MD has no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaja, A.J. Advancing Biologic Therapy for Refractory Autoimmune Hepatitis. Dig Dis Sci 67, 4979–5005 (2022). https://doi.org/10.1007/s10620-021-07378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-07378-4

Keywords

Navigation