Skip to main content

Advertisement

Log in

MTHFR 677T Carrier Influences the Methylation Status of H. Pylori-Infected Gastric Mucosa in Older Subjects

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

DNA methylation is one of the major events in the early process of gastric carcinogenesis and it also occurs in non-neoplastic gastric mucosa. MTHFR plays a central role in biotransformation of folate to form S-adenosylmethionine, the universal methyl donor in cells and affects DNA methylation status. We investigated the association between common functional polymorphism of MTHFR C677T and DNA methylation status in H. pylori-infected non-neoplastic gastric mucosa. For 99 gastric mucosa samples from H. pylori positive non-cancer subjects, we assessed the association between MTHFR C677T genetic polymorphism and promoter methylation status of the four candidate promoters (p14, p16, DAP-kinase, and CDH1). In most all of the subjects, weak correlation was found between the p16 promoter methylation and MTHFR 677T carriers (age, sex-adjusted OR = 2.57, P = 0.053). When subjects were divided into two groups according to age, the MTHFR T carrier held a significantly higher risk of p16 promoter methylation, especially in 66 years or older generation (sex-adjusted OR = 14.28, P = 0.02). In addition, mean number of methylated CpG cites were significantly higher in T carrier than CC genotype in the same generation (P = 0.0418). Our data suggest that MTHFR 677T carrier influences the risk of DNA methylation in gastric mucosa in the long-term outcome of the H. pylori infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

H. pylori :

Helicobacter pylori

MTHFR:

Methylenetetrahydrofolate reductase

MSP:

Methylation-specific-polymerase chain reaction

References

  1. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7:536–540. doi:10.1038/ng0894-536.

    Article  PubMed  CAS  Google Scholar 

  2. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;58:5489–5494.

    PubMed  CAS  Google Scholar 

  3. Sato F, Harpaz N, Shibata D, et al. Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Res. 2002;62:1148–1151.

    PubMed  CAS  Google Scholar 

  4. Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001;61:3573–3577.

    PubMed  CAS  Google Scholar 

  5. Bian YS, Osterheld MC, Fontolliet C, Bosman FT, Benhattar J. p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus. Gastroenterology. 2002;122:1113–1121. doi:10.1053/gast.2002.32370.

    Article  PubMed  CAS  Google Scholar 

  6. Wong DJ, Paulson TG, Prevo LJ, et al. p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res. 2001;61:8284–8289.

    PubMed  CAS  Google Scholar 

  7. Kaneto H, Sasaki S, Yamamoto H, et al. Detection of hypermethylation of the p16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut. 2001;48:372–377. doi:10.1136/gut.48.3.372.

    Article  PubMed  CAS  Google Scholar 

  8. Chan AO, Lam SK, Wong BC, et al. Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut. 2003;52:502–506. doi:10.1136/gut.52.4.502.

    Article  PubMed  CAS  Google Scholar 

  9. Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–995. doi:10.1158/1078-0432.CCR-05-2096.

    Article  PubMed  CAS  Google Scholar 

  10. Tahara T, Arisawa T, Shibata T, et al. Increased number of methylated CpG islands correlates with Helicobacter pylori infection, histological and serological severity of chronic gastritis. Eur J Gastroenterol Hepatol (in press)

  11. Kang GH, Lee HJ, Hwang KS, Lee S, Kim JH, Kim JS. Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. Am J Pathol. 2003;163:1551–1556.

    PubMed  CAS  Google Scholar 

  12. Tahara T, Arisawa T, Shibata T, et al. Risk prediction of gastric cancer by analysis of aberrant DNA methylation in non-neoplastic gastric epithelium. Digestion. 2007;75:54–61. doi:10.1159/000101775.

    Article  PubMed  CAS  Google Scholar 

  13. Kaise M, Yamasaki T, Yonezawa J, Miwa J, Ohta Y, Tajiri H. CpG island hypermethylation of tumor-suppressor genes in H. pylori-infected non-neoplastic gastric mucosa is linked with gastric cancer risk. Helicobacter. 2008;13:35–41. doi:10.1111/j.1523-5378.2008.00639.x.

    Article  PubMed  CAS  Google Scholar 

  14. Nakajima T, Maekita T, Oda I, et al. Higher methylation levels in gastric mucosae significantly correlate with higher risk of gastric cancers. Cancer Epidemiol Biomarkers Prev. 2006;15:2317–2321. doi:10.1158/1055-9965.EPI-06-0436.

    Article  PubMed  CAS  Google Scholar 

  15. Rizos H, Darmanian AP, Mann GJ, Kefford RF. Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization. Oncogene. 2000;19:2978–2985. doi:10.1038/sj.onc.1203629.

    Article  PubMed  CAS  Google Scholar 

  16. Tannapfel A, Busse C, Weinans L, et al. INK4a-ARF alterations and p53 mutations in hepatocellular carcinomas. Oncogene. 2001;20:7104–7109. doi:10.1038/sj.onc.1204902.

    Article  PubMed  CAS  Google Scholar 

  17. Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 1999;59:5438–5442.

    PubMed  CAS  Google Scholar 

  18. Kang GH, Shim YH, Jung HY, Kim WH, Ro JY, Rhyu MG. CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res. 2001;61:2847–2851.

    PubMed  CAS  Google Scholar 

  19. Raveh T, Kimchi A. DAP kinase—a proapoptotic gene that functions as a tumor suppressor. Exp Cell Res. 2001;264:185–192. doi:10.1006/excr.2000.5134.

    Article  PubMed  CAS  Google Scholar 

  20. Schildhaus HU, Krockel I, Lippert H, Malfertheiner P, Roessner A, Schneider-Stock R. Promoter hypermethylation of p16INK4a, E-cadherin, O6-MGMT, DAPK and FHIT in adenocarcinomas of the esophagus, esophagogastric junction and proximal stomach. Int J Oncol. 2005;26:1493–1500.

    PubMed  CAS  Google Scholar 

  21. Waki T, Tamura G, Sato M, Terashima M, Nishizuka S, Motoyama T. Promoter methylation status of DAP-kinase and RUNX3 genes in neoplastic and non-neoplastic gastric epithelia. Cancer Sci. 2003;94:360–364. doi:10.1111/j.1349-7006.2003.tb01447.x.

    Article  PubMed  CAS  Google Scholar 

  22. Kim YI. Role of folate in colon cancer development and progression. J Nutr. 2003;133:S3731–S3739.

    Google Scholar 

  23. Larsson SC, Giovannucci E, Wolk A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology. 2006;131:1271–1283.

    Article  PubMed  CAS  Google Scholar 

  24. Kim YI. Will mandatory folic acid fortification prevent or promote cancer? Am J Clin Nutr. 2004;80:1123–1128.

    PubMed  CAS  Google Scholar 

  25. Duthie SJ. Folic acid deficiency and cancer: mechanisms of DNA instability. Br Med Bull. 1999;55:578–592.

    Article  PubMed  CAS  Google Scholar 

  26. Chiang PK, Gordon RK, Tal J, et al. S-Adenosylmethionine and methylation. FASEB J. 1996;10:471–480.

    PubMed  CAS  Google Scholar 

  27. Zhang J, Zotz RB, Li Y, et al. Methylenetetrahydrofolate reductase C677T polymorphism and predisposition towards esophageal squamous cell carcinoma in a German Caucasian and a northern Chinese population. J Cancer Res Clin Oncol. 2004;130:574–580.

    PubMed  CAS  Google Scholar 

  28. van Rijnsoever M, Grieu F, Elsaleh H, Joseph D, Iacopetta B. Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut. 2002;51:797–802.

    Article  PubMed  Google Scholar 

  29. Wang J, Sasco AJ, Fu C, et al. Aberrant DNA methylation of P16, MGMT, and hMLH1 genes in combination with MTHFR C677T genetic polymorphism in esophageal squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev. 2008;17:118–125.

    Article  CAS  Google Scholar 

  30. Esteller M, Tortola S, Toyota M, et al. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 2000;60:129–133.

    PubMed  CAS  Google Scholar 

  31. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA. 1996;93:9821–9826.

    Article  PubMed  CAS  Google Scholar 

  32. Katzenellenbogen RA, Baylin SB, Herman JG. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood. 1999;93:4347–4353.

    PubMed  CAS  Google Scholar 

  33. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–113.

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki H, Hibi T, Marshall BJ. Helicobacter pylori: present status and future prospects in Japan. J Gastroenterol. 2007;42:1–15.

    Article  PubMed  Google Scholar 

  35. Suzuki H, Minegishi Y, Nomoto Y, et al. Down-regulation of a morphogen (sonic hedgehog) gradient in the gastric epithelium of Helicobacter pylori-infected Mongolian gerbils. J Pathol. 2005;206:186–197.

    Article  PubMed  CAS  Google Scholar 

  36. Zintzaras E. Association of methylenetetrahydrofolate reductase (MTHFR) polymorphisms with genetic susceptibility to gastric cancer: a meta-analysis. J Hum Genet. 2006;51:618–624.

    Article  PubMed  CAS  Google Scholar 

  37. Friso S, Choi SW, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99:5606–5611.

    Article  PubMed  CAS  Google Scholar 

  38. Marugame T, Tsuji E, Kiyohara C, et al. Relation of plasma folate and methylenetetrahydrofolate reductase C677T polymorphism to colorectal adenomas. Int J Epidemiol. 2003;32:64–66.

    Article  PubMed  Google Scholar 

  39. Kim JK, Kim S, Han JH, et al. Polymorphisms of 5,10-methylenetetrahydrofolate reductase and risk of stomach cancer in a Korean population. Anticancer Res. 2005;25:2249–2252.

    PubMed  CAS  Google Scholar 

  40. Sarbia M, Geddert H, Kiel S, et al. Methylenetetrahydrofolate reductase C677T polymorphism and risk of adenocarcinoma of the upper gastrointestinal tract. Scand J Gastroenterol. 2005;40:109–111.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang FF, Terry MB, Hou L, et al. Genetic polymorphisms in folate metabolism and the risk of stomach cancer. Cancer Epidemiol Biomarkers Prev. 2007;16:115–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomitsu Tahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahara, T., Shibata, T., Nakamura, M. et al. MTHFR 677T Carrier Influences the Methylation Status of H. Pylori-Infected Gastric Mucosa in Older Subjects. Dig Dis Sci 54, 2391–2398 (2009). https://doi.org/10.1007/s10620-008-0624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0624-0

Keywords

Navigation