Skip to main content
Log in

Pleiotrophin Expression in Human Pancreatic Cancer and Its Correlation with Clinicopathological Features, Perineural Invasion, and Prognosis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Pleiotrophin (PTN), a heparin-binding growth factor also known as neurite growth-promoting factor, exhibits several properties related with tumor development. PTN and its receptor, N-syndecan, may play a very important role in tumor growth and neural invasion of pancreatic cancer. We investigated PTN and N-syndecan protein levels in 38 patients with pancreatic cancer by immunohistochemistry, and analyzed for its correlation with clinicopathological features, perineural invasion, and prognosis. The results showed that PTN and N-syndecan proteins were found in 24 (63.2%) and 22 (57.9%) specimens, respectively. PTN and N-syndecan expressions were associated with perineural invasion (P = 0.016 and P = 0.029, respectively). High PTN expression was closely related to an advanced TNM stage (P = 0.007), lymph node metastasis (P = 0.040), and decreased postoperative survival at 3 years (50.0% versus 20.8%, respectively; P = 0.001). We conclude that high expression of PTN combined with N-syndecan may contribute to the increased perineural invasion and poor prognosis of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Richter A, Niedergethmann M, Sturm JW, Lorenz D, Post S, Trede M (2003) Long-term results of partial pancreaticoduodenectomy for ductal adenocarcinoma of the pancreatic head: 25-year experience. World J Surg 27:324–329. doi:10.1007/s00268-002-6659-z

    Article  PubMed  Google Scholar 

  2. Wagner M, Redaelli C, Lietz M, Seiler CA, Friess H, Buchler MW (2004) Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br J Surg 91:586–594. doi:10.1002/bjs.4484

    Article  PubMed  CAS  Google Scholar 

  3. Li D, Xie K, Wolff R, Abbruzzese JL (2004) Pancreatic cancer. Lancet 363:1049–1057. doi:10.1016/S0140-6736(04)15841-8

    Article  PubMed  CAS  Google Scholar 

  4. Laheru D, Jaffee EM (2005) Immunotherapy for pancreatic cancer—science driving clinical progress. Nat Rev Cancer 5:459–467. doi:10.1038/nrc1630

    Article  PubMed  CAS  Google Scholar 

  5. Hirai I, Kimura W, Ozawa K, Kudo S, Suto K, Kuzu H et al (2002) Perineural invasion in pancreatic cancer. Pancreas 24:15–25. doi:10.1097/00006676-200201000-00003

    Article  PubMed  Google Scholar 

  6. Ceyhan GO, Giese NA, Erkan M, Kerscher AG, Wente MN, Giese T et al (2006) The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann Surg 244:274–281. doi:10.1097/01.sla.0000217642.68697.55

    Article  PubMed  Google Scholar 

  7. Veit C, Genze F, Menke A, Hoeffert S, Gress TM, Gierschik P et al (2004) Activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase is required for glial cell line-derived neurotrophic factor-induced migration and invasion of pancreatic carcinoma cells. Cancer Res 64:5291–5300. doi:10.1158/0008-5472.CAN-04-1112

    Article  PubMed  CAS  Google Scholar 

  8. Hida H, Jung CG, Wu CZ, Kim HJ, Kodama Y, Masuda T et al (2003) Pleiotrophin exhibits a trophic effect on survival of dopaminergic neurons in vitro. Eur J Neurosci 17:2127–2134. doi:10.1046/j.1460-9568.2003.02661.x

    Article  PubMed  Google Scholar 

  9. Bao X, Mikami T, Yamada S, Faissner A, Muramatsu T, Sugahara K (2005) Heparin-binding growth factor, pleiotrophin, mediates neuritogenic activity of embryonic pig brain-derived chondroitin sulfate/dermatan sulfate hybrid chains. J Biol Chem 280:9180–9191. doi:10.1074/jbc.M413423200

    Article  PubMed  CAS  Google Scholar 

  10. Deuel TF, Zhang N, Yeh HJ, Silos-Santiago I, Wang ZY (2002) Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway. Arch Biochem Biophys 397:162–171. doi:10.1006/abbi.2001.2705

    Article  PubMed  CAS  Google Scholar 

  11. Laaroubi K, Delbe J, Vacherot F, Desgranges P, Tardieu M, Jaye M et al (1994) Mitogenic and in vitro angiogenic activity of human recombinant heparin affin regulatory peptide. Growth Factors 10:89–98. doi:10.3109/08977199409010982

    Article  PubMed  CAS  Google Scholar 

  12. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–371

    PubMed  CAS  Google Scholar 

  13. Peria FM, Neder L, Marie SK, Rosemberg S, Oba-Shinjo SM, Colli BO et al (2007) Pleiotrophin expression in astrocytic and oligodendroglial tumors and its correlation with histological diagnosis, microvascular density, cellular proliferation and overall survival. J Neurooncol 84:255–261. doi:10.1007/s11060-007-9379-2

    Article  PubMed  Google Scholar 

  14. Kadomatsu K, Muramatsu T (2004) Midkine and pleiotrophin in neural development and cancer. Cancer Lett 204:127–143. doi:10.1016/S0304-3835(03)00450-6

    Article  PubMed  CAS  Google Scholar 

  15. Lu KV, Jong KA, Kim GY, Singh J, Dia EQ, Yoshimoto K et al (2005) Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J Biol Chem 280:26953–26964. doi:10.1074/jbc.M502614200

    Article  PubMed  CAS  Google Scholar 

  16. Muller S, Kunkel P, Lamszus K, Ulbricht U, Lorente GA, Nelson AM et al (2003) A role for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene 22:6661–6668. doi:10.1038/sj.onc.1206763

    Article  PubMed  CAS  Google Scholar 

  17. Wu H, Barusevicius A, Babb J, Klein-Szanto A, Godwin A, Elenitsas R et al (2005) Pleiotrophin expression correlates with melanocytic tumor progression and metastatic potential. J Cutan Pathol 32:125–130. doi:10.1111/j.0303-6987.2005.00282.x

    Article  PubMed  CAS  Google Scholar 

  18. Chen H, Gordon MS, Campbell RA, Li M, Wang CS, Lee HJ et al (2007) Pleiotrophin is highly expressed by myeloma cells and promotes myeloma tumor growth. Blood 110:287–295. doi:10.1182/blood-2006-08-042374

    Article  PubMed  CAS  Google Scholar 

  19. Chang Y, Zuka M, Perez-Pinera P, Astudillo A, Mortimer J, Berenson JR et al (2007) Secretion of pleiotrophin stimulates breast cancer progression through remodeling of the tumor microenvironment. Proc Natl Acad Sci USA 104:10888–10893. doi:10.1073/pnas.0704366104

    Article  PubMed  CAS  Google Scholar 

  20. Weber D, Klomp HJ, Czubayko F, Wellstein A, Juhl H (2000) Pleiotrophin can be rate-limiting for pancreatic cancer cell growth. Cancer Res 60:5284–5288

    PubMed  CAS  Google Scholar 

  21. Klomp HJ, Zernial O, Flachmann S, Wellstein A, Juhl H (2002) Significance of the expression of the growth factor pleiotrophin in pancreatic cancer patients. Clin Cancer Res 8:823–827

    PubMed  CAS  Google Scholar 

  22. Souttou B, Juhl H, Hackenbruck J, Rockseisen M, Klomp HJ, Raulais D et al (1998) Relationship between serum concentrations of the growth factor pleiotrophin and pleiotrophin-positive tumors. J Natl Cancer Inst 90:1468–1473. doi:10.1093/jnci/90.19.1468

    Article  PubMed  CAS  Google Scholar 

  23. Kinnunen A, Kinnunen T, Kaksonen M, Nolo R, Panula P, Rauvala H (1998) N-syndecan and HB–GAM (heparin-binding growth-associated molecule) associate with early axonal tracts in the rat brain. Eur J Neurosci 10:635–648. doi:10.1046/j.1460-9568.1998.00082.x

    Article  PubMed  CAS  Google Scholar 

  24. Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H (1994) Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB–GAM). Identification as N-syndecan (syndecan-3). J Biol Chem 269:12999–13004

    PubMed  CAS  Google Scholar 

  25. Kinnunen T, Kaksonen M, Saarinen J, Kalkkinen N, Peng HB, Rauvala H (1998) Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. J Biol Chem 273:10702–10708. doi:10.1074/jbc.273.17.10702

    Article  PubMed  CAS  Google Scholar 

  26. Zhu Z, Friess H, diMola FF, Zimmermann A, Graber HU, Korc M et al (1999) Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 17:2419–2428

    PubMed  CAS  Google Scholar 

  27. Wittekind C, Compton CC, Greene FL, Sobin LH (2002) TNM residual tumor classification revisited. Cancer 94:2511–2516. doi:10.1002/cncr.10492

    Article  PubMed  Google Scholar 

  28. Ozaki H, Hiraoka T, Mizumoto R, Matsuno S, Matsumoto Y, Nakayama T et al (1999) The prognostic significance of lymph node metastasis and intrapancreatic perineural invasion in pancreatic cancer after curative resection. Surg Today 29:16–22. doi:10.1007/BF02482964

    Article  PubMed  CAS  Google Scholar 

  29. Nakao A, Harada A, Nonami T, Kaneko T, Takagi H (1996) Clinical significance of carcinoma invasion of the extrapancreatic nerve plexus in pancreatic cancer. Pancreas 12:357–361. doi:10.1097/00006676-199605000-00006

    Article  PubMed  CAS  Google Scholar 

  30. Kayahara M, Nakagawara H, Kitagawa H, Ohta T (2007) The nature of neural invasion by pancreatic cancer. Pancreas 35:218–223

    PubMed  Google Scholar 

  31. Takahashi T, Ishikura H, Motohara T, Okushiba S, Dohke M, Katoh H (1997) Perineural invasion by ductal adenocarcinoma of the pancreas. J Surg Oncol 65:164–170. doi:10.1002/(SICI)1096-9098(199707)65:3<164::AID-JSO4>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  32. Miyazaki I (1997) Perineural invasion and surgical treatment of the pancreas head cancer. Nippon Geka Gakkai Zasshi 98:646–648

    PubMed  CAS  Google Scholar 

  33. Sudo T, Murakami Y, Uemura K, Hayashidani Y, Hashimoto Y, Ohge H, et al (2008) Prognostic impact of perineural invasion following pancreatoduodenectomy with lymphadenectomy for ampullary carcinoma. Dig Dis Sci

  34. Mitsunaga S, Hasebe T, Kinoshita T, Konishi M, Takahashi S, Gotohda N et al (2007) Detail histologic analysis of nerve plexus invasion in invasive ductal carcinoma of the pancreas and its prognostic impact. Am J Surg Pathol 31:1636–1644

    Article  PubMed  Google Scholar 

  35. Yi SQ, Miwa K, Ohta T, Kayahara M, Kitagawa H, Tanaka A et al (2003) Innervation of the pancreas from the perspective of perineural invasion of pancreatic cancer. Pancreas 27:225–229. doi:10.1097/00006676-200310000-00005

    Article  PubMed  Google Scholar 

  36. Rauvala H, Huttunen HJ, Fages C, Kaksonen M, Kinnunen T, Imai S et al (2000) Heparin-binding proteins HB–GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol 19:377–387. doi:10.1016/S0945-053X(00)00084-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Program of Science & Technology of Shanxi Province (No. 2007K09-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyong Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Ma, Q., Wang, L. et al. Pleiotrophin Expression in Human Pancreatic Cancer and Its Correlation with Clinicopathological Features, Perineural Invasion, and Prognosis. Dig Dis Sci 54, 895–901 (2009). https://doi.org/10.1007/s10620-008-0433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0433-5

Keywords

Navigation