Skip to main content
Log in

Endothelin-1 Receptor Antagonist (LU-135252) Improves the Microcirculation and Course of TNBS Colitis in Rats

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The role of microcirculation in the pathogenesis and course of chronic inflammatory bowel disease is still unclear. The aim of this study was the evaluation of the role of microcirculation in colitis activity in the rat TNBS (trinitrobenzenesulfonic acid) colitis model using endothelin-1 and a selective endothelin-1 receptor antagonist (LU-135252). Target parameters were capillary blood flow, functional capillary density, vascular permeability, and leukocyte sticking as well as recording of hematocrit, weight course, diuresis, stool quality, and degree of inflammation using a histological colitis score. The acute phase of TNBS colitis is characterized by an extensive disturbance of microcirculation (a significant decrease in capillary blood flow and capillary density and a significant increase in capillary permeability and leukocyte sticking in the mucosa). There is also a significant increase in hematocrit and a significant decrease in diuresis and weight. An exogenous supply of endothelin-1 does not lead to an aggravation of these disorders because of a possible blockage of the endothelin-1 receptors by endogenous endothelin-1 in this florid inflammatory phase. Applying the selective endothelin-1 receptor A antagonist LU-135252 leads to a significant improvement of all microcirculatory parameters and clinical findings compared to the untreated colitis group. Direct improvement of capillary blood flow in the early phase of colitis leads to reduced colitis activity, which underscores the pathogenetic role of the microcirculation in the progression of colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ginzburg L, Oppenheimer GD (1933) Non-specific granulomata of the intestines. Ann Surg 98:1046–1062

    Article  PubMed  CAS  Google Scholar 

  2. Marston A, Marcuson RW, Chapman M, Arthur JF (1969) Experimental study of devascularization of the colon. Gut 10:121–130

    Article  PubMed  CAS  Google Scholar 

  3. Foitzik T, Kruschewski M, Kroesen A, Buhr HJ (1999) Does microcirculation play a role in the pathogenesis of inflammatory bowel diseases? Int J Colorectal Dis 14:29–34

    Article  PubMed  CAS  Google Scholar 

  4. Kruschewski M, Foitzik T, Perez-Cantó A, Hübotter A, Buhr HJ (2001) Changes of colonic mucosal microcirculation and histology in two colitis models: an experimental study using intravital microscopy and a new histological scoring system. Dig Dis Sci 46:2336–2343

    Article  PubMed  CAS  Google Scholar 

  5. Laroux FS, Grisham B (2001) Immunological basis of inflammatory bowel disease: role of the microcirculation. Microcirculation 8:283–301

    Article  PubMed  CAS  Google Scholar 

  6. Thornton M, Solomon MJ (2002) Crohn’s disease: in defense of a microvascular aetiology. Int J Colorectal Dis 17:287–297

    Article  PubMed  Google Scholar 

  7. Wakefield AJ, Sawyerr AM, Dhillon AP, Pittilo RM, Rowles PM, Lewis AAM, Pounder RE (1989) Pathogenesis of Crohn’s disease: multifocal gastrointestinal infarction. Lancet 334:1057–1062

    Article  Google Scholar 

  8. Wakefield AJ, Sankey EA, Dhillon AP, Sawyerr AM, More L, Sim R, Pittilo RM, Rowles PM, Hudson M, Lewis AAM, Pounder RE (1991) Granulomatous vasculitis in Crohn’s disease. Gastroenterology 100:1279–1287

    PubMed  CAS  Google Scholar 

  9. Wakefield AJ, Ekbom A, Dhillon AP, Pittilo RM, Pounder RE (1995) Crohn’s disease: pathogenesis and persistant measles virus infection. Gastroenterology 108:911–916

    Article  PubMed  CAS  Google Scholar 

  10. Fries W, Pagiaro E, Canova E, Carraro P, Gasparini G, Pomerri F, Martin A, Carlotto C, Mazzon E, Sturniolo GC, Longo G (1998) The effect of heparin on trinitrobenzene sulphonic acid-induced colitis in the rat. Aliment Pharmacol Ther 12:229–236

    Article  PubMed  CAS  Google Scholar 

  11. Törkvist L, Thorlacius H, Sjöqvist U, Bohman L, Lapidus A, Flood L, Agren B, Raud J, Löfberg R (1999) Low molecular weight heparin as adjuvant therapy in active ulcerative colitis. Aliment Pharmacol Ther 13:1323–1328

    Article  PubMed  Google Scholar 

  12. Ang YS, Mahmud N, White B, Byrne M, Kelly A, Lawler M, McDonald GSA, Smith OP, Keeling PWN (2000) Randomized comparsion of unfractionated heparin with corticosteroids in severe active inflammatory bowel disease. Aliment Pharmacol Ther 14:1015–1022

    Article  PubMed  CAS  Google Scholar 

  13. Vrij AA, Jansen JM, Schoon EJ, de Bruine A, Hemker HC, Stockbrügger RW (2001) Low molecular weight heparin treatment in steroid refractory ulcerative colitis: Clinical outcome and influence on mucosal capillary thrombi. Scand J Gastroenterol 36 (Suppl 234):41–47

    Article  CAS  Google Scholar 

  14. Brahme F, Lindström C (1970) A comparative radiographic and pathological study of intestinal vasoarchitecture in Crohn’s disease and in ulcerative colitis. Gut 11:928–940

    Article  PubMed  CAS  Google Scholar 

  15. Anthony A, Pounder RE, Dhillon AP, Wakefield AJ (1997) Vascular anatomy defines sites of indomethacin induced jejunal ulceration along the mesenteric margin. Gut 41:763–770

    Article  PubMed  CAS  Google Scholar 

  16. Anthony A, Pounder RE, Dhillon AP, Wakefield AJ (2000) Similarities between ileal Crohn’s disease and indomethacin experimental jejunal ulcers in the rat. Aliment Pharmacol Ther 14:241–245

    Article  PubMed  CAS  Google Scholar 

  17. Menger MD, Lehr H-A (1993) Scope and perspectives of intravital microscopy—bridge over from in vitro to in vivo. Immunol Today 14:519–522

    Article  PubMed  CAS  Google Scholar 

  18. Mithöfer K, Schmidt J, Gebhard MM, Buhr HJ, Herfarth Ch, Klar E (1995) Measurement of blood flow in pancreatic exchange capillaries with FITC-labeled erythrocytes. Microvasc Res 49:33–48

    Article  PubMed  Google Scholar 

  19. Murch SH, Braegger CP, Sessa WC, MacDonald TT (1992) High endothelin-1 immunoreactivity in Crohn’s disease and ulcerative colitis. Lancet 339:381–385

    Article  PubMed  CAS  Google Scholar 

  20. Hogaboam CM, Muller MJ, Collins SM, Hunt RH (1996) An orally active non-selective endothelin receptor antagonist, bosentan, markedly reduces injury in rat model of colitis. Eur J Pharmacol 309:261–269

    Article  PubMed  CAS  Google Scholar 

  21. Letizia C, Boirivant M, De Toma G, Cerci S, Subioli S, Scuro L, Ferrari P, Pallone F (1998) Plasma levels of endothelin-1 in patients with Crohn’s disease and ulcerative colitis. Ital J Gastroenterol Hepatol 30:266–269

    PubMed  CAS  Google Scholar 

  22. Güllüoğlu BM, Kurtel H, Güllüoğlu MG, Yeğen C, Aktan AÖ, Dizdaroğlu F, Yalin R, Yeğen BÇ (1999) Role of endothelins in trinitrobenzene sulfonic acid-induced colitis in rats. Digestion 60:484–492

    Article  PubMed  Google Scholar 

  23. Padol I, Huang JQ, Hogaboam CM, Hunt RH (2000) Therapeutic effects of the endothelin receptor antagonist Ro 48-5695 in the TNBS/DNBS rat model of colitis. Eur J Gastroenterol Hepatol 12:257–265

    PubMed  CAS  Google Scholar 

  24. Kanazawa S, Tsunoda T, Onuma E, Majima T, Kagiyama M, Kikuchi K (2001) VEGF, basic–FGF, and TGF–β in Crohn’s disease and ulcerative colitis: a novel mechanism of chronic intestinal inflammation. Am J Gastroenterol 96:822–828

    PubMed  CAS  Google Scholar 

  25. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96:795–803

    PubMed  CAS  Google Scholar 

  26. Eibl G, Hotz HG, Faulhaber J, Kirchengast M, Buhr HJ, Foitzik T (2000) Effect of endothelin and endothelin receptor blockade on capillary permeability in experimental pancreatitis. Gut 46:390–394

    Article  PubMed  CAS  Google Scholar 

  27. Foitzik T, Faulhaber J, Hotz HG, Kirchengast M, Buhr HJ (1998) Endothelin receptor blockade improves fluid sequestration, pancreatic capillary blood flow and survival in severe experimental pancreatitis. Ann Surg 228:670–675

    Article  PubMed  CAS  Google Scholar 

  28. Foitzik T, Hotz HG, Eibl G, Hotz B, Kirchengast M, Buhr HJ (1999) Therapy for microcirculatory disorders in severe acute pancreatitis: effectiveness of platelet-activating factor receptor blockade vs. endothelin receptor blockade. J Gastrointest Surg 3:244–251

    Article  PubMed  CAS  Google Scholar 

  29. Foitzik T, Eibl G, Hotz HG, Faulhaber J, Kirchengast M, Buhr HJ (2000) Endothelin receptor blockade in severe acute pancreatitis leads to systemic enhancement of microcirculation, stabilization of capillary permeability, and improved survival rates. Surgery 127:399–407

    Article  Google Scholar 

  30. Nolte D, Zeintl H, Steinbauer M, Pickelmann S, Messmer K (1995) Functional capillary density: an indicator of tissue perfusion? Int J Microcirc 15:244–249

    Article  CAS  Google Scholar 

  31. Klyscz T, Jünger M, Jung F, Zeintl H (1997) Cap image—-a new kind of computer–assisted video image analysis system for dynamic capillary microscopy. Biomed Technik 42:168–175

    Article  CAS  Google Scholar 

  32. Hoffmann JN, Vollmar B, Inthorn D, Schildberg FW, Menger MD (1999) A chronic model for intravital microscopic study of microcirculatory disorders and leukocyte/endothelial cell interaction during normotensive endotoxemia. Shock 12:355–364

    Article  PubMed  CAS  Google Scholar 

  33. Granger DN, Kvietys PR, Perry MA (1993) Leukocyte-endothelial cell adhesion induced by ischemia and reperfusion. Can J Physiol Pharmacol 71:67–75

    PubMed  CAS  Google Scholar 

  34. Granger DN, Kubes P (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 55:662–675

    PubMed  CAS  Google Scholar 

  35. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732

    Article  PubMed  CAS  Google Scholar 

  36. Traish AM, Moran E, Saenz de Tejada I (1991) Physicochemical characterization and solubilization of endothelin receptors. Receptor 1:229–242

    PubMed  CAS  Google Scholar 

  37. Deniz M, Cetinel S, Kurtel H (2004) Blood flow alterations in TNBS-induced colitis: role of endothelin receptors. Inflamm Res 53:329–336

    Article  PubMed  CAS  Google Scholar 

  38. Shibata Y, Taruishi M, Ashida T (1993) Experimental ileitis in dogs and colitis in rats with trinitrobenzene sulfonic acid—colonoscopic and histopathologic studies. Gastroenterol Jpn 28:518–527

    PubMed  CAS  Google Scholar 

  39. Wirtz S, Neurath MF (2000) Animal models of intestinal inflammation: new insights into the molecular pathogenesis and immunotherapy of inflammatory bowel disease. Int J Colorectal Dis 15:144–160

    Article  PubMed  CAS  Google Scholar 

  40. Malizia G, Calabrese A, Cottone M, Raimondo M, Trejdosiewicz LK, Smart CJ, Oliva L, Pagliaro L (1991) Expression of leukocyte adhesion molecules by mucosal mononuclear phagocytes in inflammatory bowel disease. Gastroenterology 100:150–159

    PubMed  CAS  Google Scholar 

  41. Koizumi M, King N, Lobb R, Benjamin C, Podolsky DK (1992) Expression of vascular adhesion molecules in inflammatory bowel disease. Gastroenterology 103:840–847

    PubMed  CAS  Google Scholar 

  42. Nakamura S, Ohtani H, Watanabe Y, Fukushima K, Matsumoto T, Kitano A, Kobayashi K, Nagura H (1993) In situ expression of the cell adhesion molecules in inflammatory bowel disease: evidence of immunologic activation of vascular endothelial cells. Lab Invest 69:77–85

    PubMed  CAS  Google Scholar 

  43. Albelda SM, Smith CW, Ward PA (1994) Adhesion molecules and inflammatory injury. FASEB J 8:504–512

    PubMed  CAS  Google Scholar 

  44. Jones SC, Banks RE, Haidar A, Gearing AJ, Hemingway IK, Ibbotson SH, Dixon MF, Axon AT (1995) Adhesion molecules in inflammatory bowel disease. Gut 36:724–730

    Article  PubMed  CAS  Google Scholar 

  45. Binion DG, West GA, Ina K, Ziats NP, Emancipator SN, Fiocchi C (1997) Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterology 112:1895–1907

    Article  PubMed  CAS  Google Scholar 

  46. Binion DG, West GA, Volk EE, Drazba JA, Ziats NP, Petras RE, Fiocchi C (1998) Acquired increase in leucocyte binding by intestinal microvascular endothelium in inflammatory bowel disease. Lancet 352:1742–1746

    Article  PubMed  CAS  Google Scholar 

  47. Panés J, Granger DN (1998) Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 114:1066–1090

    Article  PubMed  Google Scholar 

  48. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84:2068–2101

    PubMed  CAS  Google Scholar 

  49. Arndt H, Palitzsch K-D, Anderson DC, Rusche J, Grisham MB, Granger DN (1995) Leukocyte-endothelial cell adhesion in a model of intestinal inflammation. Gut 37:374–379

    Article  PubMed  CAS  Google Scholar 

  50. del Zoppo GJ (1997) Microvascular responses to cerebral ischemia/inflammation. Ann NY Acad Sci 823:132–147

    Article  PubMed  CAS  Google Scholar 

  51. Sanz M-J, Johnston B, Issekutz A, Kubes P (1999) Endothelin-1 causes P-selectin-dependent leukocyte rolling and adhesion within rat mesenteric microvessels. Am J Physiol 277 (Heart Circ Physiol 46):H1823–H1830

  52. Vapaatalo H, Mervaala E (2001) Clinically important factors influencing endothelial function. Med Sci Monit 7:1075–1085

    PubMed  CAS  Google Scholar 

  53. Oda M, Han J-Y, Nakamura M (2000) Endothelial cell dysfunction in microvasculature: relevance to disease processes. Clin Hemorheol Microcirc 23:199–211

    PubMed  CAS  Google Scholar 

  54. Bertuglia S, Colantuoni A, Intaglietta M (1993) Effect of leukocyte adhesion and microvascular permeability on capillary perfusion during ischemia-reperfusion injury in hamster cheek pouch. Int J Microcirc Clin Exp 13:13–26

    PubMed  CAS  Google Scholar 

  55. He P, Wang J, Zeng M (2000) Leukocyte adhesion and microvessel permeability. Am J Physiol Heart Circ Physiol 278:1686–1694

    Google Scholar 

  56. Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    PubMed  CAS  Google Scholar 

  57. Muckart DJ, Bhagwanjee S (1997) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference definitions of the systemic inflammatory response syndrome and allied disorders in relation to critically injured patients. Crit Care Med 25:1789–1795

    Article  PubMed  CAS  Google Scholar 

  58. Lush CW, Kvietys PR (2000) Microvascular dysfunction in sepsis. Microcirculation 7:83–101

    Article  PubMed  CAS  Google Scholar 

  59. Karnik AM, Bashir R, Khan FA, Carvounis CP (1998) Renal involvement in the systemic inflammatory reaction syndrome. Renal Fail 20:103–116

    CAS  Google Scholar 

  60. Best WR, Becktel JM, Singleton JW, Kern F Jr (1976) Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology 70:439–444

    PubMed  CAS  Google Scholar 

  61. Lankisch PG, Pohl U, Otto J, Rahlf G (1988) When should treatment of acute experimental pancreatitis be started? The early phase of bile-induced acute pancreatitis. Res Exp Med 188:123–129

    Article  CAS  Google Scholar 

  62. Lienenlüke B, Stojanovic T, Fiebig T, Fayyazi A, Germann T, Hecker M (2001) Thalidomide impairment of trinitrobenzene sulphonic acid-induced colitis in the rat—role of endothelial cell-leukocyte interaction. Br J Pharmacol 133:1414–1423

    Article  PubMed  Google Scholar 

  63. Plusczyk T, Bersal B, Westermann S, Menger M, Feifel G (1999) ET-1 induces pancreatitis-like microvascular deterioration and acinar cell injury. J Surg Res 85:301–310

    Article  PubMed  CAS  Google Scholar 

  64. Plusczyk T, Bersal B, Menger M, Feifel G (2001) Differential effects of ET-1, ET-2, and ET-3 on pancreatic microcirculation, tissue integrity and inflammation. Dig Dis Sci 46:1343–1351

    Article  PubMed  CAS  Google Scholar 

  65. McCartney SA, Ballinger AB, Vojnovic I, Farthing MJ, Warner TD (2002) Endothelin in human inflammatory bowel disease: comparison to rat trinitrobenzenesulphonic acid-induced colitis. Life Sci 71:1893–1904

    Article  PubMed  CAS  Google Scholar 

  66. Naicker S, Bhoola KD (2001) Endothelins: vasoactive modulators of renal function in health and disease. Pharmacol Ther 90:61–88

    Article  PubMed  CAS  Google Scholar 

  67. Pollock DM (2001) Endothelin antagonists in the treatment of renal failure. Curr Opin Invest Drugs 2:513–520

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kruschewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruschewski, M., Anderson, T., Loddenkemper, C. et al. Endothelin-1 Receptor Antagonist (LU-135252) Improves the Microcirculation and Course of TNBS Colitis in Rats. Dig Dis Sci 51, 1461–1470 (2006). https://doi.org/10.1007/s10620-005-9019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-005-9019-7

Keywords

Navigation