Skip to main content

Advertisement

Log in

Loss of Tubuloglomerular Feedback in Decompensated Liver Cirrhosis: Physiopathological Implications

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

In healthy subjects, arterial pressure reduction or renal ischemia produces renal artery dilatation through autoregulation and tubuloglomerular feedback (TuGF). Patients with decompensated cirrhosis have reduced kidney perfusion pressure but show renal vasoconstriction instead of autoregulation-mediated vasodilation. This study investigates the consequences of kidney autoregulation loss on renal perfusion, glomerular filtration rate, and tubular handling of electrolytes in both compensated and ascitic nonazotemic cirrhotic patients. Forty-two consecutive patients with diuretic-free liver cirrhosis (32 with preascitic and 10 with ascitic disease) and 10 controls were submitted to the following determinations: (a) basal plasma renin activity and aldosterone levels; (b) endogenous dopaminergic activity measured as incremental aldosterone responses during metoclopramide administration; and (c) renal clearances of sodium, potassium, inulin, para-aminohippurate and lithium. Compared with the other groups, ascitic patients showed lower renal plasma flow (P < 0.01) and lithium clearance (P < 0.05), a higher filtration fraction (P < 0.01), and secondary aldosteronism. Controls and preascitic patients displayed tubuloglomerular feedback (the mechanism increasing the glomerular filtration rate when a reduced sodium load reaches the distal tubule), as demonstrated by negative correlations between fractional excretion of lithium (an expression of fractional delivery of sodium to the distal nephron) and glomerular filtration rate (respectively, r = −0.73, P < 0.03, and r = −0.48, P < 0.01). Conversely, patients with ascites showed a positive correlation between lithium fractional excretion and glomerular filtration rate (r = 0.64, P < 0.05). Reduction in renal perfusion, increased filtration fraction, and TuGF derangement, as found in decompensated patients, are indicative of prevalent postglomerular arteriolar vasoconstriction, with ensuing stimulation of proximal tubular sodium reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Navar LG: Renal autoregulation: perspectives from whole kidney and single nephron studies. Am J Physiol 234:F357–F370, 1978

    CAS  PubMed  Google Scholar 

  2. Hall JE, Guyton AC, Jackson TE, Coleman TG, Lohmeier TE, Trippodo NC: Control of glomerular filtration rate by renin-angiotensin system. Am J Physiol 233:F366–F372, 1977

    CAS  PubMed  Google Scholar 

  3. Steinhausen M, Endlich K, Wiegman DL: Glomerular blood flow. Kidney Int 38:769–784, 1990

    Article  CAS  PubMed  Google Scholar 

  4. Casellas D, Moore LC: Autoregulation and tubuloglomerular feedback in juxtaglomerular arterioles. Am J Physiol 258:F660–F669, 1990

    CAS  PubMed  Google Scholar 

  5. Lorenz JN, Weihprecht H, Schnermann J, Skott O, Briggs JP: Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol 260:F486–F493, 1991

    CAS  PubMed  Google Scholar 

  6. Lapointe JY, Bell PD, Cardinal J: Direct evidence for Na+:2Cl:K+ cotransportin macula densa cells. Am J Physiol 258:F1466–F1469, 1990

    CAS  PubMed  Google Scholar 

  7. Schlatter E, Salomonsson M, Persson AEG, Greger R: Macula densa cells sense luminal NaCl concentration via furosemide sensitive Na+-2Cl-K+ cotransport. Pfluegers Arch 414:286–290, 1989

    Article  CAS  Google Scholar 

  8. Moore LC, Casellas D: Tubuloglomerular feedback dependence of autoregulation in rat juxtaglomerular afferent arterioles. Kidney Int 37:1402–1408, 1990

    Article  CAS  PubMed  Google Scholar 

  9. Ginès P, Fernàndez-Esparrach G, Arroyo V, Rodés J: Pathogenesis of ascites in cirrhosis. Semin Liver Dis 17:175–186, 1997

    Article  PubMed  Google Scholar 

  10. Ring-Larsen H: Renal blood flow in cirrhosis: relation to systemic and portal hemodynamics and liver function. Scand J Clin Lab Invest 37:635–642, 1977

    Article  CAS  PubMed  Google Scholar 

  11. Arroyo V, Bosch J, Mauri M, Viver J, Mas A, Rivera F, Rodés J: Renin, aldosterone and renal hemodynamics in cirrhosis with ascites. Eur J Clin Invest 9: 69–74, 1979

    Article  CAS  PubMed  Google Scholar 

  12. Rimola A, Ginès P, Arroyo V, Camps J, Perez-Ayuso RM, Quintero E, Gaya J, Rivera F, Rodés J: Urinary excretion of 6-keto-prostaglandin F1α, thromboxane B2 and prostaglandin E2 in cirrhosis with ascites. Relationship to functional renal failure (hepatorenal syndrome). J Hepatol 3:111–117, 1986

    Article  CAS  PubMed  Google Scholar 

  13. Vorobioff J, Bredfeldt J, Groszmann R: Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol 244:G52–G56, 1983

    CAS  PubMed  Google Scholar 

  14. Groszmann R: Hyperdynamic circulation of liver diseases forty years later: pathophysiologyand clinical consequences. Hepatology 20:1359–1363, 1994

    Article  CAS  PubMed  Google Scholar 

  15. Colombato L, Albillos A, Groszmann R: The role of central blood volume in the development of sodium retention in portal hypertensive rats. Gastroenterology 110:193–198, 1996

    Article  CAS  PubMed  Google Scholar 

  16. Sansoè G, Biava A, Silvano S, Ferrari A, Rosina F, Smedile A, Touscoz A, Bonardi L, Rizzetto M: Renal tubular events following the passage from supine to standing position in patients with compensated liver cirrhosis: loss of tubuloglomerular feedback. Gut 51:736–741, 2002

    Article  PubMed  Google Scholar 

  17. Pugh RNH, Murray-Lion IM, Dawson JL, Pietroni MC, Williams R: Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60:646–649, 1973

    Article  CAS  PubMed  Google Scholar 

  18. Minetti EE, Cozzi MG, Biella E, Napoli F, Guidi E: Evaluation of a short protocol for the determination of para-aminohippurate and inulin clearances. J Nephrol 7:342–346, 1994

    Google Scholar 

  19. Cole BR, Giangiacomo J, Ingelfinger JR, Robson AM: Measurement of renal function without urine collection. A critical evaluation of the constant-infusion technic for determination of inulin and para-aminohippurate. N Engl J Med 287:1109–1114, 1972

    Article  CAS  PubMed  Google Scholar 

  20. Gniadek TC, Grekin RJ, Gross MD, Gross MD, Villareal JZ: Hyper-responsiveness of aldosterone to metoclopramide in aldosteronism. Clin Endocrinol 16:475–481, 1982

    Article  CAS  Google Scholar 

  21. Ganguly A, Pratt JH, Weinberger MH, Grim CE, Fineberg NS: Differing effects of metoclopramide and adrenocorticotropin on plasma aldosterone levels in glucocorticoid-suppressible hyperaldosteronism and other forms of hyperaldosteronism. J Clin Endocrinol Metab 57:388–392, 1983

    CAS  PubMed  Google Scholar 

  22. Bartels H, Bohmer M: Eine mikromethode zur kreatinibestimmung. Clin Chim Acta 32:81–85, 1971

    Article  CAS  PubMed  Google Scholar 

  23. Roe JH, Epstein JH, Goldstein NP: A photometric method for the determination of inulin in plasma and urine. J Biol Chem 178:839–845, 1949

    CAS  PubMed  Google Scholar 

  24. Smith HW, Finkelstein N, Alminosa L, et al.: The renal clearance of substituted hippuric acid derivatives and other aromatic acids in dog and men. J Clin Invest 24:388–403, 1945

    Article  CAS  PubMed  Google Scholar 

  25. Thomsen K, Olsen OV: Renal lithium clearance as a measure of the delivery of water and sodium from the proximal tubule in humans. Am J Med Sci 288:158–161, 1984

    Article  CAS  PubMed  Google Scholar 

  26. Boer WH, Koomans HA, Dorhout-Mees EJ: Lithium clearance during paradoxical natriuresis of hypotonic expansion in man. Kidney Int 32:376–381, 1987

    Article  CAS  PubMed  Google Scholar 

  27. Sansoè G, Ferrari A, Baraldi E, Castellana CN, De Santis MC, Manenti F: Renal distal tubular handling of sodium in central fluid volume homoeostasis in preascitic cirrhosis. Gut 45:750–755, 1999

    Article  PubMed  Google Scholar 

  28. Kirkwood BR: Non-parametric methods. In BR Kirkwood (ed). Essentials of Medical Statistics. Cambridge, MA, Blackwell Science, 1988, pp 147–152

    Google Scholar 

  29. Siegel S: Measures of correlation and their tests of significance. In S Siegel (ed). Nonparametric statistics for the behavioral sciences. New York, McGraw–Hill, 1956, pp 195–239

    Google Scholar 

  30. Boer WH, Koomans A, Dorhout Mees EJ, Gaillard CA, Rabelink AJ: Lithium clearance during variations in sodium intake in man: effects of sodium restriction and amiloride. Eur J Clin Invest 18:279–283, 1988

    Article  CAS  PubMed  Google Scholar 

  31. Sansoè G, Ferrari A: Letter to the Editor. Renal sodium handling in preascitic cirrhosis. Gut 48:740–741, 2001

    Article  Google Scholar 

  32. Lieberman FL, Reynolds TB: Plasma volume in cirrhosis of the liver: its relation to portal hypertension, ascites and renal failure. J Clin Invest 46:1297–1308, 1967

    PubMed  CAS  Google Scholar 

  33. Wong F, Liu P, Tobe S, Morali G, Blendis L: Central blood volume in cirrhosis: measurement with radionuclide angiography. Hepatology 19:312–321, 1994

    Article  CAS  PubMed  Google Scholar 

  34. Lewis FW, Adair O, Rector WG Jr: Arterial vasodilatation is not the cause of increased cardiac output in cirrhosis. Gastroenterology 102:1024–1029, 1992

    CAS  PubMed  Google Scholar 

  35. Wilkinson SP, Smith IK, Clarke M, Arroyo V, Richardson J, Moodie H, Williams R: Intrarenal distribution of plasma flow in cirrhosis as measured by transit renography: relationship with plasma renin activity and sodium and water retention. Clin Sci Mol Med 52:469–475, 1977

    CAS  PubMed  Google Scholar 

  36. Wilkinson SP, Smith IK, Williams R: Changes in plasma renin activity in cirrhosis: a reappraisal based on studies in 67 patients and “low renin” cirrhosis. Hypertension 1:125–129, 1979

    CAS  PubMed  Google Scholar 

  37. Trevisani F, Bernardi M, Gasbarrini A, Tamè MR, Giancane S, Andreone P, Baraldini M, Cursaro C, Ligabue A, Gasbarrini G: Bed-rest-induced hypernatriuresis in cirrhotic patients without ascites: does it contribute to maintain “compensation”? J Hepatol 16:190–196, 1992

    Article  CAS  PubMed  Google Scholar 

  38. Rector WG Jr, Adair O, Hossack KF, Rainguet S: Atrial volume in cirrhosis: relationship to blood volume and plasma concentration of atrial natriuretic factor. Gastroenterology 99:766–770, 1990

    PubMed  Google Scholar 

  39. Krishna GC, Danovitch GM, Sowers JR: Catecholamine responses to central volume expansion produced by head-out water immersion and saline infusion. J Clin Endocrinol Metab 56:998–1002, 1983

    Article  CAS  PubMed  Google Scholar 

  40. Krishna GC, Danovitch GM, Beck FWJ, Sowers JR: Dopaminergic mediation of the natriuretic response to volume expansion. J Lab Clin Med 105:214–218, 1985

    CAS  PubMed  Google Scholar 

  41. Sansoè G, Ferrari A, Baraldi E, Grisolia C, De Santis MC, Villa E, Manenti F: Endogenous dopaminergic activity in Child-Pugh A cirrhosis: potential role in renal sodium handling and in the maintenance of clinical compensation. Eur J Clin Invest 28:131–137, 1998

    Article  PubMed  Google Scholar 

  42. Wong F, Liu P, Blendis L: The mechanism of improved sodium homeostasis of low-dose losartan in preascitic cirrhosis. Hepatology 35:1449–1458, 2002

    Article  CAS  PubMed  Google Scholar 

  43. Wernze H, Spech HJ, Muller G: Studies on the activity of renin-angiotensin-aldosterone system (RAAS) in patients with cirrhosis of the liver. Klin Wochenshr 56:390–397, 1978

    Google Scholar 

  44. Bernardi M, Trevisani F, Santini C, De Palma R, Gasbarrini G: Aldosterone related blood volume expansion in cirrhosis before and during the early phase of ascites formation. Gut 8:761–766, 1983

    Article  Google Scholar 

  45. Bernardi M, Trevisani F, Gasbarrini G: The renin-angiotensin-aldosterone system in liver disease. In A Bomzon, LM Blendis (eds). Cardiovascular Complications of Liver Disease. Boca Raton, FA, CRC Press, 1990, pp 29–62

    Google Scholar 

  46. Trevisani F, Colantoni A, Sica G, Gasbarrini A, D’Intino PE, De Notariis S, De Iaso R, Barbieri A, Morselli A, Gasbarrini G: High plasma levels of atrial natriuretic peptide in preascitic cirrhosis: indirect evidence of reduced natriuretic effectiveness of the peptide. Hepatology 22:132–137, 1995

    Article  CAS  PubMed  Google Scholar 

  47. Bernardi M, Di Marco C, Trevisani F, De Collibus C, Fornalè L, Baraldini M, Andreone P, Cursaro C, Zacà F, Ligabue A, Gasbarrini G: The hemodynamic status of preascitic cirrhosis: an evaluation under steady-state condition and after postural change. Hepatology 15:341–346, 1992

    Article  Google Scholar 

  48. Salò J, Ginès A, Anibarro L, Jimenez W, Bataller R, Clària J, Ginès P, Rivera F, Arroyo V, Rodés J: Effect of upright posture and physical exercise on endogenous neurohumoral systems in cirrhotic in cirrhotic patients with sodium retention and normal supine plasma renin, aldosterone, and norepinephrine levels. Hepatology 22:479–487, 1995

    Article  PubMed  Google Scholar 

  49. Gerbes AL, Wernze H, Arendt RM, Riedel A, Sauerbruch T, Paumgartner G: Atrial natriuretic factor and renin-angiotensin-aldosterone in volume regulation of patients with cirrhosis. Hepatology 9:417–422, 1989

    Article  CAS  PubMed  Google Scholar 

  50. Epstein M, Levinson R, Sancho J, Haber E, Re R: Characterization of the renin-aldosterone system in decompensated cirrhosis. Circ Res 41:818–829, 1977

    CAS  PubMed  Google Scholar 

  51. Shapiro MD, Nicholls KM, Groves MB, Kluge R, Chung HM, Bichet DG, Schrier RW: Interrelationship between cardiac output and vascular resistance as determinants of effective arterial blood volume in cirrhotic patients. Kidney Int 28:206–211, 1985

    Article  CAS  PubMed  Google Scholar 

  52. Bernardi M, Fornalè L, Di Marco C, Trevisani F, Baraldini M, Gasbarrini A, De Collibus C, Zacà F, Ligabue A, Colantoni A, Gasbarrini G: Hyperdynamic circulation of advanced cirrhosis: a reappraisal based on posture-induced changes in hemodynamics. J Hepatol 22:309–318, 1995

    Article  CAS  PubMed  Google Scholar 

  53. Wood LJ, Massie D, McLean AJ, Dudley FJ: Renal sodium retention in cirrhosis: tubular site and relation to hepatic disfunction. Hepatology 8:831–836, 1988

    Article  CAS  PubMed  Google Scholar 

  54. Wong F, Massie D, Hsu P, Dudley FJ: Renal response to a saline load in well-compensated alcoholic cirrhosis. Hepatology 20:873–881, 1994

    Article  CAS  PubMed  Google Scholar 

  55. Wong F, Massie D, Colman J, Dudley FJ: Glomerular hyperfiltration in patients with well-compensated alcoholic cirrhosis. Gastroenterology 104:884–889, 1993

    CAS  PubMed  Google Scholar 

  56. Ginès P, Rodés J: Clinical disorders of renal function in cirrhosis with ascites. In V Arroyo, P Ginès, J Rodés, RW Schrier (eds). Ascites and renal disfunction in liver disease. Cambridge, MA, Blackwell Sciences, 1999, pp 36–62

    Google Scholar 

  57. Wright FS, Mandin H, Persson AE: Studies of the sensing mechanism in the tubuloglomerular feedback pathway. Kidney Int Suppl 12:S90–S96, 1982

    CAS  PubMed  Google Scholar 

  58. Blantz RC, Pelayo JC: A functional role for the tubuloglomerular feedback mechanism. Kidney Int 25:739–746, 1984

    Article  CAS  PubMed  Google Scholar 

  59. Briggs JP, Schnermann J: The tubuloglomerular feedback mechanism: functional and biochemical aspects. Annu Rev Physiol 49:251–273, 1987

    Article  CAS  PubMed  Google Scholar 

  60. Rose BD, Post TW: Clinical Physiology of Acid-Base and Electrolyte Disorders. 5th ed. New York, McGraw–Hill, 2001, pp 21–70

    Google Scholar 

  61. Arendshorst W, Gottschalk CW: Glomerular ultrafiltration dynamics: Historical perspective. Am J Physiol 248:F163–F170, 1985

    CAS  PubMed  Google Scholar 

  62. Haberle DA, Ruhland G, Lausser A, Moore L, Neiss A: Influence of glomerular filtration rate on renal PAH secretion in the rat kidney. Dependency of PAH extraction on renal filtration fraction. Pflugers Arch 375:131–139, 1978

    Article  CAS  PubMed  Google Scholar 

  63. Depner TA: Suppression of tubular anion transport by an inhibitor of serum protein binding in uremia. Kidney Int 20:511–518, 1981

    Article  CAS  PubMed  Google Scholar 

  64. Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM: Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res 55:669–675, 1984

    CAS  PubMed  Google Scholar 

  65. Textor SE, Novick A, Tarazi RC, Klimas V, Vidt DG, Pohl M: Critical perfusion pressure for renal function in patients with bilateral atherosclerotic renal vascular disease. Ann Intern Med 102:308–314, 1985

    CAS  PubMed  Google Scholar 

  66. Ichikawa I, Harris RC: Angiotensin actions in the kidney: renewed insight into the old hormone. Kidney Int 40:583–590, 1991

    Article  CAS  PubMed  Google Scholar 

  67. Arroyo V, Bernardi M, Epstein M, Henriksen JH, Schrier RW, Rodés J: Pathophysiology of ascites and functional renal failure in cirrhosis. J Hepatol 6:239–257, 1988

    Article  CAS  PubMed  Google Scholar 

  68. Myers BD, Deen WM, Brenner BM: Effects of norepinephrine and angiotensin II on the determinants of glomerular ultrafiltration and and proximal tubule fluid reabsorption in the rat. Circ Res 37:101–110, 1975

    CAS  PubMed  Google Scholar 

  69. Heyeraas KJ, Aukland K: Interlobular arterial resistance: influence of renal arterial pressure and angiotensin II. Kidney Int 31:1291–1298, 1987

    Article  CAS  PubMed  Google Scholar 

  70. Tucker BJ, Mundy CA, Blantz RC: Adrenergic and angiotensin II influences on renal vascular tone in chronic sodium depletion. Am J Physiol 252:F811–F817, 1987

    CAS  PubMed  Google Scholar 

  71. Gatta A, Angeli P, Caregaro L, Menon F, Sacerdoti D, Merkel C: A pathophysiological interpretation of unresponsiveness to spironolactone in a stepped-care approach to the diuretic treatment of ascites in nonazotemic cirhotic patients. Hepatology 14:231–236, 1991

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Sansoè MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansoè, G., Silvano, S., Mengozzi, G. et al. Loss of Tubuloglomerular Feedback in Decompensated Liver Cirrhosis: Physiopathological Implications. Dig Dis Sci 50, 955–963 (2005). https://doi.org/10.1007/s10620-005-2671-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-005-2671-0

Key Words

Navigation