Skip to main content

Advertisement

Log in

Disturbance in the regulation of miR 17-92 cluster on HIF-1-α expression contributes to clinically relevant radioresistant cells: an in vitro study

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Cellular radioresistance is one of the major obstacles to the effectiveness of cancer radiotherapy. In an attempt to elucidate the implication of HIF-1α and miR-17-92 expressions in refractory radioresistant cells and also in order to study the potential applications of these molecules as novel therapeutic modalities to overcome radioresistant cancers, the current study was conducted. Clinically relevant radioresistant (CRR) cells from human cancer cell lines were established by exposing to long-term fractionated radiation of X-rays. Correspondingly, microarray analysis and real time RT-PCR were performed to find miRNA involved in the CRR phenotype. HIF-1α was down-regulated and miR17-92 cluster was overexpressed in CRR cells by transfection. The expression of miR 17-3p was inhibited by specific inhibitors and miR 19a was enforced by mimics, respectively in parental cells. Overexpression of HIF-1α in parental cells or down regulation of HIF-1α in CRR cells were not involved in radioresistance. However, when HIF-1α was genetically modified to constitutively express under normoxia condition, it was rendered for protection to cells. Exogenous overexpression of miR 17-92 cluster in CRR cells resulted in abolition of HIF-1α expression and restored sensitizations to ionizing radiation. Attenuated expression of miR-17-3p in parental cells protected them from irradiation. Overall, fine-tune deregulation of miR 17-92 cluster in CRR cells might account for the accumulation of HIF-1α in the CRR cells following exposure to irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH et al (2001) Expression of hypoxia-inducible factor-1α a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61:2911–2916

    CAS  PubMed  Google Scholar 

  • Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A (2008) Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 68:1485–1494

    CAS  PubMed  Google Scholar 

  • Arvold ND, Guha N, Wang D, Matli M, Deen DF, Warren RS et al (2005) Hypoxia-induced radioresistance is independent of hypoxia-inducible factor-1A in vitro. Int J Radiat Oncol Biol Phys. 62:207–212

    PubMed  Google Scholar 

  • Cellini F, Morganti AG, Genovesi D, Silvestris N, Valentini V (2014) Role of microRNA in response to ionizing radiations: evidences and potential impact on clinical practice for radiotherapy. Molecules 19:5379–5401

    PubMed  PubMed Central  Google Scholar 

  • Dellas K, Bache M, Pigorsch SU, Taubert H, Kappler M, Holzapfel D et al (2008) Prognostic impact of HIF-1alpha expression in patients with definitive radiotherapy for cervical cancer. Strahlenther Onkol 184:169–174

    PubMed  Google Scholar 

  • Doi N, Ogawa R, Cui Z-G, Morii A, Watanabe A, Kanayama S et al (2015) The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference. Exp Cell Res. 333:249–260

    CAS  PubMed  Google Scholar 

  • Feng Y, Liu J, Kang Y, He Y, Liang B, Yang P et al (2014) miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. J Exp Clin Cancer Res. 33:1

    Google Scholar 

  • Fu Z, Chen D, Cheng H, Wang F (2015) Hypoxia-inducible factor-1α protects cervical carcinoma cells from apoptosis induced by radiation via modulation of vascular endothelial growth factor and p53 under hypoxia. Med Sci Monit: Int Med J Exp Clin Res. 21:318

    CAS  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harada H (2011) How can we overcome tumor hypoxia in radiation therapy? J Radiat Res. 52:545–556

    CAS  PubMed  Google Scholar 

  • Harada H, Kizaka-Kondoh S, Hiraoka M (2005) Optical imaging of tumor hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol Imaging. 4:182–193

    PubMed  Google Scholar 

  • Jiang P, Rao EY, Meng N, Zhao Y, Wang JJ (2010) MicroRNA-17-92 significantly enhances radioresistance in human mantle cell lymphoma cells. Radiat Oncol. 5:100

    PubMed  PubMed Central  Google Scholar 

  • Kiani AA, Kazemi A, Halabian R, Mohammadipour M, Jahanian-Najafabadi A, Roudkenar MH (2013) HIF-1alpha confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Arch Med Res 44:185–193

    CAS  PubMed  Google Scholar 

  • Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Investig 120:694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Turley H, Talks K et al (2002) Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys. 53:1192–1202

    CAS  PubMed  Google Scholar 

  • Kuwahara Y, Mori M, Oikawa T, Shimura T, Ohtake Y, Mori S et al (2010) The modified high-density survival assay is the useful tool to predict the effectiveness of fractionated radiation exposure. Int J Radiat Res. 51:297–302

    Google Scholar 

  • Kuwahara Y, Oikawa T, Ochiai Y, Roudkenar M, Fukumoto M, Shimura T et al (2011) Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy. Cell Death Dis. 2:e177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwahara Y, Roudkenar MH, Urushihara Y, Saito Y, Tomita K, Roushandeh AM et al (2017) Clinically relevant radioresistant cell line: a simple model to understand cancer radioresistance. Med Mol Morphol. 50:195–204

    CAS  PubMed  Google Scholar 

  • Kuwahara Y, Tomita K, Urushihara Y, Sato T, Kurimasa A, Fukumoto M (2018) Association between radiation-induced cell death and clinically relevant radioresistance. Histochem Cell Biol 150:649–659

    CAS  PubMed  Google Scholar 

  • Ladelfa MF, Toledo MF, Laiseca JE, Monte M (2011) Interaction of p53 with tumor suppressive and oncogenic signaling pathways to control cellular reactive oxygen species production. Antioxid Redox Signal 15:1749–1761

    CAS  PubMed  Google Scholar 

  • Lall R, Ganapathy S, Yang M, Xiao S, Xu T, Su H et al (2014) Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death Differ 21:836–844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung C-M, Chen T-W, Li S-C, Ho M-R, Hu L-Y, Liu WS et al (2014) MicroRNA expression profiles in human breast cancer cells after multifraction and single-dose radiation treatment. Oncol Rep 31:2147–2156

    CAS  PubMed  Google Scholar 

  • Liu J, Zhang J, Wang X, Li Y, Chen Y, Li K et al (2010) HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells. Exp Cell Res 316:1985–1993

    CAS  PubMed  Google Scholar 

  • Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moding EJ, Kastan MB, Kirsch DG (2013) Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 12:526–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–441

    CAS  PubMed  Google Scholar 

  • Nordsmark M, Eriksen JG, Gebski V, Alsner J, Horsman MR, Overgaard J (2007) Differential risk assessments from five hypoxia specific assays: the basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiother Oncol 83:389–397

    PubMed  Google Scholar 

  • Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E et al (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444

    CAS  PubMed  Google Scholar 

  • Patterson AV, Williams KJ, Cowen RL, Jaffar M, Telfer BA, Saunders M et al (2002) Oxygen-sensitive enzyme-prodrug gene therapy for the eradication of radiation-resistant solid tumours. Gene Ther 9:946–954

    CAS  PubMed  Google Scholar 

  • Poon E, Harris AL, Ashcroft M (2009) Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 11:e26

    PubMed  Google Scholar 

  • Ranasinghe WK, Baldwin GS, Bolton D, Shulkes A, Ischia J, Patel O (2014) HIF1α expression under normoxia in prostate cancer: which pathways to target? J Urol. 193:763–770

    PubMed  Google Scholar 

  • Schaue D, McBride WH (2015) Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 30:120

    Google Scholar 

  • Schoof CRG, da Silva Botelho EL, Izzotti A, dos Reis Vasques L (2012) MicroRNAs in cancer treatment and prognosis. Am J Cancer Res. 2:414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    CAS  PubMed  Google Scholar 

  • Shimura T (2011) Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle. J Radiat Res. 52:539–544

    CAS  PubMed  Google Scholar 

  • Shimura T, Kakuda S, Ochiai Y, Nakagawa H, Kuwahara Y, Takai Y et al (2010) Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3beta-mediated cyclin D1 overexpression. Oncogene 29:4826–4837

    CAS  PubMed  Google Scholar 

  • Sprong D, Janssen HL, Vens C, Begg AC (2006) Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status. Int J Radiat Oncol Biol Phys 64:562–572

    CAS  PubMed  Google Scholar 

  • Staab A, Fleischer M, Loeffler J, Said HM, Katzer A, Plathow C et al (2011) Small interfering RNA targeting HIF-1α reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro. Strahlenther Onkol 187:252–259

    PubMed  Google Scholar 

  • Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H et al (2008) Identification of hypoxia-inducible factor-1α as a novel target for miR-17-92 microRNA cluster. Cancer Res 68:5540–5545

    CAS  PubMed  Google Scholar 

  • Tomita K, Kuwahara Y, Takashi Y, Igarashi K, Nagasawa T, Nabika H et al (2018) Clinically relevant radioresistant cells exhibit resistance to H2O2 by decreasing internal H2O2 and lipid peroxidation. Tumour Biol. 40:1010428318799250

    PubMed  Google Scholar 

  • Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    CAS  PubMed  Google Scholar 

  • Vordermark D, Katzer A, Baier K, Kraft P, Flentje M (2004) Cell type–specific association of hypoxia-inducible factor-1α (HIF-1α) protein accumulation and radiobiologic tumor hypoxia. Int J Radiat Oncol Biol Phys. 58:1242–1250

    CAS  PubMed  Google Scholar 

  • Xu Z, Zhang Y, Ding J, Hu W, Tan Ch, Wang M et al (2018) miR-17-3p downregulates mitochondrial antioxidant enzymes and enhances the radiosensitivity of prostate cancer cells. Mol Ther Nucleic Acids. 13:64–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Ye W, Ren J, Shao Q, Qi Y, Liang J et al (2015) MicroRNA-381 increases radiosensitivity in esophageal squamous cell carcinoma. Am J Cancer Res. 5:267

    CAS  PubMed  Google Scholar 

  • Ye W, Qin F, Zhang J, Luo R, Chen H-F (2012) Atomistic mechanism of microRNA translation upregulation via molecular dynamics simulations. PLoS ONE 7:e43788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Qiu Q, Li Z, Sachdeva M, Min H, Cardona DM et al (2015) HIF-1 alpha regulates the response of primary sarcomas to radiation therapy through a cell autonomous mechanism. Radiat Res. 183:594–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Lu X, Cao Y (2013) MicroRNA and signal transduction pathways in tumor radiation response. Cell Signal 25:1625–1634

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We acknowledge department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan who hosted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehryar Habibi Roudkenar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roudkenar, M.H., Fukumoto, M., Roushandeh, A.M. et al. Disturbance in the regulation of miR 17-92 cluster on HIF-1-α expression contributes to clinically relevant radioresistant cells: an in vitro study. Cytotechnology 72, 141–153 (2020). https://doi.org/10.1007/s10616-019-00364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00364-9

Keywords

Navigation